High Density Outdoor Microalgal Culture

  • Jiří DouchaEmail author
  • Karel Lívanský


Despite the common use of open raceway pond technology for algae production, the system has many serious drawbacks resulting in low productivities and relatively high production costs. The key to higher yields and a cheaper product rests with the lowering of culture volume by decreasing the thickness of the algal layer exposed to the light. The higher the culture surface-to-volume ratio (S/V), the higher the culture density and the lower the cost of handling and harvesting. Basic parameters (light, temperature, mixing, carbon dioxide, oxygen, nutrition) affecting algal productivity in thin-layer (TL) photobioreactor have been assessed. In a low volume of vigorously mixed culture, utilization of light energy and algal yields are increased. Production costs are reduced to about one fifth (20 %) compared to raceways ponds.


Microalgae Chlorella Culture parameters High density culture Open ponds Thin layer photobioreactor Productivity Photosynthetic efficiency Economic consideration 

List of Acronyms


dissolved oxygen


dry weight


ethyl propylene dimer


photosynthetic active radiation


photosynthetic efficiency


polyunsaturated fatty acid


surface to volume ratio


thin layer



The work was supported by the projects EUREKA of the Ministry of Education Youth and Sports of the Czech Republic (nos. OE 221 and OE 09025).

We wish to express our gratitude to BCS Engineering, a.s., Brno, Czech Republic for their fruitful technical cooperation.


  1. Akyev AY, Tsoglin LN (1992) Effect of oxygen on O2 exchange and increase of cell biomass in the development cycle of Chlorella. Soviet Plant Physiol 39:312–317Google Scholar
  2. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J. Phycol 35(2):215–226CrossRefGoogle Scholar
  3. Becker EW, Venkataraman LV (1980) Production and processing of algae in pilot plant scale experiences of the Indo-German project. In: Shelef G, Soeder CJ (ed) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 35–50Google Scholar
  4. Becker EW (1994) Microalgae: biotechnology and microbiology, Cambridge studies in biotechnology 10, Cambridge University Press, CambridgeGoogle Scholar
  5. Belay A (1997) Mass culture of Spirulina outdoors—the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira), physiology, cell biology and biotechnology. Taylor & Francis, London, pp 131–158Google Scholar
  6. Ben-Yaakov S, Guterman H, Vonshak A, Richmond A (1985) An automatic method for on-line estimation of the photosynthetic rate in open algal ponds. Biotechnol Bioeng 27:1136–1145PubMedCrossRefGoogle Scholar
  7. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  8. Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south-north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315PubMedCrossRefGoogle Scholar
  9. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506PubMedGoogle Scholar
  10. Castillo JS, Merino FM, Heussler P (1980) Production and ecological implications of algae mass culture under Peruvian conditions. In: Shelef G, Soeder CJ (ed) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 123–134Google Scholar
  11. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Biores Technol 102:71–81CrossRefGoogle Scholar
  12. Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274Google Scholar
  13. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306PubMedCrossRefGoogle Scholar
  14. Demirbas A (2010) Use of algae as biofuel sources. Energy conversion and management 51(12):2738–2749CrossRefGoogle Scholar
  15. Doucha J (1998) The Chlorella programme in the Czech Republic. Inst Microbiol, Czech Acad Sci 16Google Scholar
  16. Doucha J (2012) Are microalgae suitable for production of bioethanol? (In Czech). Energie 21 5(2):34–37Google Scholar
  17. Doucha J, Lívanský K (1995a) Process of solar cultivation of microscopic algae and bioreactor for performing the process. Cz patent No 279579Google Scholar
  18. Doucha J, Lívanský K (1995b) Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Arch Hydrobiol/Algolog Stud 76:129–147Google Scholar
  19. Doucha J, Lívanský K (1998, 1999) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process. Greek patent 1002924; US Patent 5981271 AGoogle Scholar
  20. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  21. Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440PubMedCrossRefGoogle Scholar
  22. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117CrossRefGoogle Scholar
  23. Doucha J, Lívanský K, Bínová J, Kubičko P, Novotný P (1993) Thin-layer high density microalgal culture system: productivity and energy costs. In: Masojídek J, Šetlík I (eds) Progress in biotechnology of photoautotrophic microorganisms, Book of abstracts, 6th Int Conf on Appl Algology, České Budějovice, 6–11 SeptemberGoogle Scholar
  24. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  25. Doušková I, Doucha J, Lívanský K, Machát J, Novák P, Umysová D, Zachleder V, Vítová M (2009) Simultaneous flue gas bioremediation and reduction of microalgal production costs. Appl Microbiol Biotechnol 82:179–185PubMedCrossRefGoogle Scholar
  26. EUREKA project OE 221 BIOFIX of the Ministry of Education, Youth and Sports of the Czech Republic (2006–2009): Use of carbon dioxide from flue gas for production of microalgaeGoogle Scholar
  27. EUREKA project OE 09025 ALGANOL of the Ministry of Education, Youth and Sports of the Czech Republic (2009–2012): Production of biofuels from microalgae with a high content of starch and lipids using flue gas CO2 as a carbon sourceGoogle Scholar
  28. Fournadzieva S, Pillarski P (1993) Mass culture and application of algae in Bulgaria. In: Masojídek J, Šetlík I (eds) Progress in biotechnology of photoautotrophic microorganisms, Book of abstracts. 6th Int Conf on Appl Algology, České Budějovice 6–11 SeptemberGoogle Scholar
  29. Fournadzieva S, Gabev A, Pilarski P, Dittrt F (1993) Oxygen evolution, productivity and biomass quality of open mass algal cultures under conditions of increased medium bicarbonate content. Arch Hydrobiol/Algolog Stud 71:103–110Google Scholar
  30. Goldman JC, Dennett MR, Riley CB (1981) Inorganic carbon sources and biomass regulation in inorganic microalgal cultures. Biotechnol Bioeng 23:995–1014CrossRefGoogle Scholar
  31. Grima EM, Fernández FGA, Camacho FG, Vhosti Y (1999) Photobioreactors, light regime, mass transfer, and scaleup. J Biotechnol 70(1–3):231–247CrossRefGoogle Scholar
  32. Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity? J Appl Phycol 1:333–340CrossRefGoogle Scholar
  33. Grobbelaar JU (1991) The influence of light/dark cycles in mixed algal cultures on their productivity. Biores Technol 38(2–3):189–194CrossRefGoogle Scholar
  34. Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314CrossRefGoogle Scholar
  35. Grobbelaar JU, Nedbal L, Tichý V, Šetlík I (1995) Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layer sloping reactors. J Appl Phycol 7:175–184CrossRefGoogle Scholar
  36. Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221CrossRefGoogle Scholar
  37. Janssen M, Tramper J, Mur LC, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81(2):193–210PubMedCrossRefGoogle Scholar
  38. Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew B (ed) Algal cultures from laboratory to pilot plant. Carnegie Institution of Washington Publication 600, Washington DC, pp 63–158Google Scholar
  39. Kubín Š, Borns E, Doucha J, Weiss V (1983) Light absorption and production rate of Chlorella vulgaris in light of different spectral composition. Biochem Physiol Pflanzen 178:193–205CrossRefGoogle Scholar
  40. Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Chem Eng 49:3516–3526CrossRefGoogle Scholar
  41. Lam MK, Lee KT (2012) Microalgae, biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690PubMedCrossRefGoogle Scholar
  42. Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335PubMedCrossRefGoogle Scholar
  43. Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411CrossRefGoogle Scholar
  44. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315CrossRefGoogle Scholar
  45. Lívanský K (1996) Effect of O2, CO2 and temperature on the light saturated growth of Scenedesmus obliquus. Arch Hydrobiol/Algolog Stud 82:69–82Google Scholar
  46. Lívanský K, Doucha J (1996) CO2 and O2 gas exchange in outdoor thin-layer high density microalgal cultures. J Appl Phycol 8:353–358CrossRefGoogle Scholar
  47. Lívanský K, Doucha J (1997) Additional CO2 saturation of thin-layer outdoor microalgal cultures: CO2 mass transfer and absorption efficiency. Arch Hydrobiol 122/Algolog Stud 87:145–154Google Scholar
  48. Lívanský K, Doucha J (1998) Influence of solar irradiance, culture temperature and CO2 supply on daily course of O2 evolution by Chlorella mass cultures in outdoor open thin-layer culture units. Arch Hydrobiol 124/Algolog Stud 89:137–149Google Scholar
  49. Lívanský K, Doucha J (1999) Liquid film mass transfer coefficients K L for O2 and CO2 desorption from open thin-layer microalgal cultures into atmosphere. Arch Hydrobiol 127/Algolog Stud 92:109–132Google Scholar
  50. Lívanský K, Doucha J (2003) Evaluation of dissolved oxygen (DO) profiles in microalgal suspension on outdoor thin-layer cultivation surface. Arch Hydrobiol 149/Algolog Stud 110:151–165Google Scholar
  51. Lívanský K, Doucha J (2005) Utilization of carbon dioxide by Chlorella kessleri in outdoor open thin-layer culture units. Arch Hydrobiol 157/Algolog Stud 116:129–147Google Scholar
  52. Lívanský K, Kajan M (1994) Relationship between pCO2 and pH in batch algal cultures as a basis for an estimation of pCO2 control by means of a pH-stat system. Arch Hydrobiol/Algolog Stud 74:105–119Google Scholar
  53. Lívanský K, Kajan M, Pilarski PS (1993) PCO2 and pO2 profiles along the flow of algal suspension in open solar culture units: verification of a mathematical model. Arch Hydrobiol/Algolog Stud 70:97–119Google Scholar
  54. Lívanský K, Doucha J, Hu H, Li Y (2006) CO2 partial pressure-pH relationships in the medium and relevance to CO2 mass balance in outdoor open thin-layer Arthrospira (Spirulina) cultures. Arch Hydrobiol 165(3):365–381CrossRefGoogle Scholar
  55. Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525CrossRefGoogle Scholar
  56. Mori K (1986) Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted through optical fibers. Biotechnol Bioeng Symp 15:331–345Google Scholar
  57. Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74:136–144PubMedCrossRefGoogle Scholar
  58. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301PubMedCrossRefGoogle Scholar
  59. Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microbial suspension by reduction of light harvesting pigments. J Appl Phycol 9:503–510Google Scholar
  60. Nedbal L, Tichý V, Grobbelaar JU, Xiong VF, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333CrossRefGoogle Scholar
  61. Ogawa T, Fujii T, Aiba T (1980) Effect of oxygen on the growth (yield) of Chlorella vulgaris. Arch Microbiol 127:25–31CrossRefGoogle Scholar
  62. Ogbonna JC, Yada H, Tanaka H (1995) Effect of cell movement by random mixing between the surface and bottom of photobioreactors on algal productivity. J Ferment Bioeng 79(2):152–157CrossRefGoogle Scholar
  63. Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 305–328Google Scholar
  64. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Biores Technol 102(1):35–42CrossRefGoogle Scholar
  65. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177CrossRefGoogle Scholar
  66. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microb Biotechnol 57:287–293CrossRefGoogle Scholar
  67. Pulz O, Scheibenbogen K (1998) Design and performance with respect to light energy input. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer Verlag, Berlin, pp 123–152Google Scholar
  68. Richmond A (1988) A prerequisite for industrial microalga-culture efficient utilization of solar irradiation. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Science, Amsterdam, pp 237–244Google Scholar
  69. Richmond A (2000) Microalgal biotechnology at the turn of the millenium: a personal view. J Appl Phycol 12:441–451CrossRefGoogle Scholar
  70. Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Inc, Boca Raton, Florida, pp 245–253Google Scholar
  71. Simmer J (1979) Radiation energy, temperature and algal growth. In: Marvan P, Přibil S, Lhotský O (eds) Algal assays and monitoring eutrophication. E. Schweizerbart’s Verlagsbuchhandlung. Naegele u. Obermiller, Stuttgart, pp 41–45Google Scholar
  72. Sobczuk TM, Camacho FG, Rubio FC, Fernández FGA, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475CrossRefGoogle Scholar
  73. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96PubMedCrossRefGoogle Scholar
  74. Šetlík I, Šust V, Málek I (1970) Dual purpose open circulation unit for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algolog Stud 1:111–164 (Třeboň)Google Scholar
  75. Tichý V, Poulson M, Grobbelaar JU, Xiong F, Nedbal L (1995) Photosynthesis, growth and photoinhibition of microalgae exposed to intermittent light. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 5. Kluwer Academic Publishers, pp 1029–1032Google Scholar
  76. Torzillo G, Giovanetti L, Bocci F, Materassi R (1984) Effect of oxygen concentration on the protein content of Spirulina biomass. Biotechnol Bioeng 26:1134–1135PubMedCrossRefGoogle Scholar
  77. Torzillo G, Pushparaj B, Masojídek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348CrossRefGoogle Scholar
  78. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, pp 178–214Google Scholar
  79. Vonshak A (1997) Outdoor mass production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology cell-biology and biotechnology. Taylor & Francis, London, pp 79–100Google Scholar
  80. Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344PubMedCrossRefGoogle Scholar
  81. Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratory of Cell Cycles of Algae, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic

Personalised recommendations