Advertisement

Feasibility of Halophyte Domestication for High-Salinity Agriculture

  • J. Jed BrownEmail author
  • Edward P. Glenn
  • S. E. Smith
Chapter
Part of the Tasks for Vegetation Science book series (TAVS, volume 47)

Abstract

We discuss the process of domesticating wild halophytes to serve as crop plants using seawater irrigation. First steps in this domestication involve determining whether halophyte species exist that may produce significant amounts of a usable product under seawater irrigation and that this is a sustainable agronomic practice. This is followed by development of strategies to improve crop productivity via selecting appropriate species for domestication and then affecting agronomic traits through plant breeding. We demonstrate that halophytes may be productive under seawater irrigation, that this management system may be sustainable, and there are demonstrated pathways toward domestication.

Keywords

New crops Crop domestication Salinity Salt-affected soils Seawater Drainage water reuse Halophytes 

References

  1. 1.
    Flower TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884CrossRefGoogle Scholar
  2. 2.
    Flower TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24CrossRefGoogle Scholar
  3. 3.
    Rozema J, Schat H (2012) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot. http://dx.doi.org/10.1016/j.envexpbot.2012.08.004
  4. 4.
    Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480CrossRefGoogle Scholar
  5. 5.
    Flowers T, Hajibagheri M, Clipson N (1986) Halophytes. Quart Rev Biol 61:313–337CrossRefGoogle Scholar
  6. 6.
    Aronson J (1989) HALOPH; salt tolerant plants for the world-a computerized global data base of halophytes with emphasis on their economic uses. University of Arizona Press, TucsonGoogle Scholar
  7. 7.
    Brouwer A, Goffeau M, Heibloem M (1985) Irrigation water management: training manual No.1 – Introduction to irrigation. FAO, RomeGoogle Scholar
  8. 8.
    Boyko H (1966) Salinity and aridity: new approaches to old problems. Dr. W. Junk, The HagueCrossRefGoogle Scholar
  9. 9.
    Boyko H (1967) Salt-water agriculture. Sci Am 216:89–96CrossRefGoogle Scholar
  10. 10.
    Boyko H, Boyko E (1959) Seawater irrigation, a new line of research on a bioclimatic plant-soil complex. Int J Bioclim 3:1–17Google Scholar
  11. 11.
    Holaender A (ed) (1979) The biosaline concept: an approach to the utilization of underexploited resources. Plenum, New YorkGoogle Scholar
  12. 12.
    Van Schilfgaarde J, Rhoades JD (1984) Coping with salinity. In: Engelbert EA, Sheuring AF (eds) Water scarcity: impacts on western agriculture. University of California Press, Berkeley/Los Angeles, pp 157–179Google Scholar
  13. 13.
    Breckle SW (2009) Is sustainable agriculture with seawater irrigation realistic? In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress: improving crop efficiency. Springer Science + Business Media, Dordrecht, pp 187–196. Springer, NetherlandsCrossRefGoogle Scholar
  14. 14.
    Katschnig D, Broekman R, Rozema J (2012) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot. http://dx.doi.org/10.1016/j.envexpbot.2012.04.002
  15. 15.
    Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  16. 16.
    Watson MC, O’Leary JW, Glenn EP (1987) Evaluation of Atriplexlentiformis (torr) S.Wats.an Atriplexnummularia Lindl. as irrigated forage crops. J Arid Environ 13:293–303Google Scholar
  17. 17.
    Watson MC (1990) Atriplex species as irrigated forage crops. Agric Ecosyst Environ 32:107–118CrossRefGoogle Scholar
  18. 18.
    Soliz D, Glenn EP, Seaman R, Yoklic M, Nelson SG, Brown P (2011) Water consumption, irrigation efficiency and nutritional value of Atriplexlentiformis grown on reverse osmosis brine in a desert irrigation district. Agric Ecosyst Environ 140:473–483CrossRefGoogle Scholar
  19. 19.
    Jordan FL, Yoklic M, Morino K, Brown PK, Seaman R, Glenn EP (2009) Consumptive water use and stomatal conductance of Atriplexlentiformis irrigated with industrial brine in a desert irrigation district. Agric For Meteor 149:899–912CrossRefGoogle Scholar
  20. 20.
    Glenn EP, O’Leary JW (1985) Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. J Arid Environ 9:81–91Google Scholar
  21. 21.
    Glenn EP, O’Leary JW, Watson MC et al (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251:1065–1067CrossRefGoogle Scholar
  22. 22.
    Salunkhe DK (ed) (1992). World oilseeds. Springer, New YorkGoogle Scholar
  23. 23.
    Richards LA (ed) (1954) Agricultural handbook no. 60. USDA, Washington, DCGoogle Scholar
  24. 24.
    Ayers RS, Westcot DW (1976) Water quality for agriculture, handbook 29. FAO, RomeGoogle Scholar
  25. 25.
    Frenkel H, Goertzen JO, Rhoades JD (1978) Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci Soc Am J 42:32–39CrossRefGoogle Scholar
  26. 26.
    Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19CrossRefGoogle Scholar
  27. 27.
    Letey J, Hoffman GJ, Hopmans JW et al (2011) Evaluation of soil salinity leaching requirement guidelines. Agric Water Manag 98:502–506CrossRefGoogle Scholar
  28. 28.
    Glenn EP, Olsen M, Frye R, Moore D (1994) Use of halophytes to remove carbon from the atmosphere: results of a demonstration experiment. Electric Power Research Institute, TR-103310, Research report 8011–03, Palo Alto, CaliforniaGoogle Scholar
  29. 29.
    Glenn EP, Riley J, Hicks N, Swingle S (1995) Seawater irrigation of halophytes for animal feed. In: Choukr-Allah R, Malcolm M, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 221–236Google Scholar
  30. 30.
    Glenn EP, Anday T, Chaturvedi R et al (2012) Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environ Exp Bot. http://dx.doi.org/10.1016/j.envexpbot.2012.05.002
  31. 31.
    Glenn EP, Miyamoto S, Moore D et al (1997) Water requirements for cultivating Salicorniabigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730CrossRefGoogle Scholar
  32. 32.
    Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44Google Scholar
  33. 33.
    Zerai DB, Glenn EP, Chatervedi R et al (2010) Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol Eng 36:730–739CrossRefGoogle Scholar
  34. 34.
    Sang T (2011) Toward the domestication of lignocellulosic energy crops: learning from food crop domestication free access. J Integr Plant Biol 53:96–104CrossRefGoogle Scholar
  35. 35.
    Khan MA, Qaiser M (2006) Halophytes of Pakistan: characteristics, distribution and potential economic usages. In: Khan MA, Böer B, Kust GS, Barth HJ (eds) Sabkha ecosystems. Springer, New York, pp 129–153CrossRefGoogle Scholar
  36. 36.
    Ravindran K, Venkatesan K, Balakrishnan V, Chellappan K, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664CrossRefGoogle Scholar
  37. 37.
    Zhao K, Fan H, Jiang X, Song J (2002) Improvement and utilization of saline soil by planting halophytes. Chin J Appl Environ Biol 8:31–35Google Scholar
  38. 38.
    Harlan JR (1992) Crops and man. Crop Science Society of American, MadisonGoogle Scholar
  39. 39.
    Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48CrossRefGoogle Scholar
  40. 40.
    Warwick SI, Stewart C (2005) Crops come from wild plants – how domestication, transgenes, and linkage together shape ferality. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 9–30Google Scholar
  41. 41.
    Gul B, Ansari R, Flowers TJ, Khan MA (2012) Germination strategies of halophyte seeds under salinity. Environ Exp Bot. http://dx.doi.org/10.1016/j.envexpbot.2012.11.006
  42. 42.
    Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–31CrossRefGoogle Scholar
  43. 43.
    Allard RW (1999) Principles of plant breeding. Wiley, New York, p 485Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute Center for Water and EnvironmentMasdar Institute of Science and TechnologyAbu DhabiUAE
  2. 2.Environmental Research LaboratoryUniversity of ArizonaTucsonUSA
  3. 3.School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonUSA

Personalised recommendations