Sabkha Ecosystems pp 67-72

Part of the Tasks for Vegetation Science book series (TAVS, volume 47) | Cite as

Halophytes for the Production of Liquid Biofuels

  • J. Jed Brown
  • Iwona Cybulska
  • Tanmay Chaturvedi
  • Mette H. Thomsen
Chapter

Abstract

We discuss the potential of using halophytes as a source for producing liquid biofuels. We review the potential pathways for converting oilseeds into biodiesel and bio-derived synthetic paraffinic kerosene and presents some preliminary data on biomass composition and pretreatment of the halophyte Salicornia bigelovii. Six samples of S. bigelovii cultivated at three fertilizer levels (F1: 1 gN/m2, F2: 1.5 gN/m2 and F3: 2 gN/m2) and two salinity levels (S1: 10 ppt and S5: 50 ppt salt) were analyzed with regard to chemical composition and bioethanol potential. Chemical characterization showed that S. bigelovii contained, 16.31–55.67 g/100gTS (total solids) of carbohydrates, 5.42–16.60 g/100gTS of lignin, 27.85–66.37 g/100gTS of total extractives (including extractable ash), and 2.18–9.68 g/100gTS of structural ash, depending on the plant fraction and cultivation conditions. Enzymatic hydrolysis of the pretreated samples revealed high glucose recoveries of up to 90 % (of glucose in raw S. bigelovii) corresponding to ethanol yield of 111 kg ethanol/dry ton S. bigelovii.

References

  1. 1.
    Murphy R, Woods J, Black M, McManus M (2011) Global developments in the competition for land from biofuels. Food Policy 36:S52–S61CrossRefGoogle Scholar
  2. 2.
    Bryan BA, King D, Wang E (2010) Biofuels agriculture: landscape‐scale trade‐offs between fuel, economics, carbon, energy, food, and fiber. GCB Bioenergy 6:330–345CrossRefGoogle Scholar
  3. 3.
    Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenerg 5:1818–1822CrossRefGoogle Scholar
  4. 4.
    Abideen Z, Ansari R, Gul B, Khan MA (2012) The place of halophytes in Pakistan’s biofuel industry. Biofuels 2:211–220CrossRefGoogle Scholar
  5. 5.
    Warshay B, Pan J, Sgouridis S (2011) Aviation industry’s quest for a sustainable fuel: considerations of scale and modal opportunity carbon benefit. Biofuels 2:33–58CrossRefGoogle Scholar
  6. 6.
    Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophytes as source of edible oil. J Arid Environ 68:315–321CrossRefGoogle Scholar
  7. 7.
    Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 2:227–255CrossRefGoogle Scholar
  8. 8.
    Hileman JI, Stratton RW, Donohoo PE (2010) Energy content and alternative jet fuel viability. J Propuls Power 6:1184–1196CrossRefGoogle Scholar
  9. 9.
    Kinder JD, Rahmes T (2009) Evaluation of bio-derived synthetic paraffinic kerosene (Bio-SPK). Sustainable biofuels research & technology program. The Boeing Company, SeattleGoogle Scholar
  10. 10.
    Thomsen MH, Haugaard-Nielsen H (2008) Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass. J Ind Microbiol Biotechnol 35:303–311CrossRefGoogle Scholar
  11. 11.
    Miller BG, Tillman D (2008) Combustion engineering issues for solid fuel systems. Access Online via ElsevierGoogle Scholar
  12. 12.
    Kraidees MS, Abouheif MA, Al-Saiady MY, Tag-Eldin A, Metwally H (1998) The effect of dietary inclusion of halophyte Salicornia bigelovii Torr on growth performance and carcass characteristics of lambs. Anim Feed Sci Technol 6:149–159CrossRefGoogle Scholar
  13. 13.
    Thomsen MH, Thygesen A, Thomsen AB (2008) Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresour Technol 99:4221–4228CrossRefGoogle Scholar
  14. 14.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  15. 15.
    Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 13:4851–4861CrossRefGoogle Scholar
  16. 16.
    Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 1:17–25CrossRefGoogle Scholar
  17. 17.
    Pordesimo LO, Hames BR, Sokhansanj S, Edens WC (2005) Variation in corn stover composition and energy content with crop maturity. Biomass Bioenerg 28:366–374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. Jed Brown
    • 1
  • Iwona Cybulska
    • 2
  • Tanmay Chaturvedi
    • 2
  • Mette H. Thomsen
    • 2
  1. 1.Institute Center for Water and EnvironmentMasdar Institute of Science and TechnologyAbu DhabiUAE
  2. 2.Institute Center for EnergyMasdar Institute of Science and TechnologyAbu DhabiUAE

Personalised recommendations