Sabkha Ecosystems pp 283-298 | Cite as
Salt Marshes and Biodiversity
Abstract
Estuaries and coastal lagoons around the world are wetlands of great importance and they are regularly targeted as prime conservation sites. Many include wildlife refuges and have nature reserves that were set up in areas preserved from development in order to keep valuable species and habitats, while maintaining traditions and sustained use.
Tidal wetlands are often mentioned in the literature as natural habitats with high biological productivity. The net primary production in a salt marsh is often higher than in temperate or tropical forests and this productivity is directly linked to the important role halophytes play in estuaries, in terms of the value-added.
Salt marshes may be a sink of heavy metals. The ability to phytostabilize contaminants in the rhizo-sediment is an important aspect in the self-remediative processes and biogeochemistry of this ecosystem, and will help filtering natural and anthropogenic loads of nutrients and pollutants discharged into the wetland.
There is also a provision of rare and unique habitats, which support nursery grounds for commercial fish and wildlife, including vital feeding grounds for many migratory birds. Rediscovered as a new source of amenity and leisure activities for the population living in urban areas, salt marsh halophytes and estuaries have an important role in the preservation of biodiversity.
In this paper we discuss the support of the salt marsh ecosystem to the estuarine birds, and consequently its contribution for biodiversity.
Keywords
Salt Marsh Tidal Flat Migratory Bird Lower Marsh Tidal AreaReferences
- 1.Brown DM (ed) (1995) Mesopotamia: the mighty kings. Time-Life Books, New YorkGoogle Scholar
- 2.Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’ Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:353–360CrossRefGoogle Scholar
- 3.WieskiK GH, Craft CB, Pennings SC (2010) Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast. Estuar Coast 33:161–169CrossRefGoogle Scholar
- 4.Teal JM, Howes BL (2000) Salt marsh values: retrospection from the end of the century. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishing, DordrechtGoogle Scholar
- 5.Best M, Massey A, Prior A (2007) Developing a saltmarsh classification tool for the European water framework directive. Mar Pollut Bull 55:205–214CrossRefGoogle Scholar
- 6.Mitsch W, Gosselink J (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33CrossRefGoogle Scholar
- 7.Edwards KR, Mills KP (2005) Aboveground and belowground productivity of Spartina alterniflora (smooth cord-grass) in natural and created Louisiana salt marshes. Estuaries 28:252–265CrossRefGoogle Scholar
- 8.Caçador I, Tibério S, Cabral H (2007) Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in past fifty years. Hydrobiologia 587:205–211CrossRefGoogle Scholar
- 9.Sousa A, Caçador I, Lillebø A, Pardal M (2008) Heavy metal accumulation in Hallimione portulacoides: intra- and extra-cellular binding sites. Chemosphere 70:850–857CrossRefGoogle Scholar
- 10.Sousa AI, Sousa AI, Lillebø AI, Risgaard-Petersen N, Pardal MA, Caçador I (2012) Denitrification: an ecosystem service provided by salt marshes. Mar Ecol Prog Ser 448:79–92CrossRefGoogle Scholar
- 11.Valiela I, Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5:92–102CrossRefGoogle Scholar
- 12.Seitzinger SP (1988) Denitrification in fresh and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724Google Scholar
- 13.Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24CrossRefGoogle Scholar
- 14.Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green A, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:152–226CrossRefGoogle Scholar
- 15.Caçador I, Mascarenhas I, Mascarenhas P (1999) Biomass of Spartina maritima, Halimione portulacoides and Arthrocnemum fruticosum in Tagus estuary salt marshes. Program Biometeorol 13:33–41Google Scholar
- 16.Jéquel N, Rouve D (1983) Marais, Vasières, Estuaires. Ouest-FranceGoogle Scholar
- 17.Duarte B, Caetano M, Almeida P, Vale C, Caçador I (2010) Accumulation and biological cycling of heavy metal in the root-sediment system of four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668CrossRefGoogle Scholar
- 18.McLusky DS (1971) Ecology of Estuaries. Heinemann Educational Books, LondonGoogle Scholar
- 19.Duarte B, Caçador I (2012) Particulate metal distribution in Tagus Estuary (Portugal), during a flood episode. Mar Pollut Bull 64:2109–2116CrossRefGoogle Scholar
- 20.Caçador I, Neto JM, Duarte B, Barros DV, Pinto M, Marques JC (2013) Development of an Angiosperm Quality Assessment Tool (AQuA – Tool) for ecological quality evaluation of Portuguese water bodies – a multi-metric approach. Ecol Indic 25:141–148CrossRefGoogle Scholar
- 21.Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82CrossRefGoogle Scholar
- 22.Richert M, Saarnio S, Juutinen S, Silvola J, Augustin J, Merbach W (2000) Distribution of assimilated carbon in the system Phragmites australis-waterlogged peat soil after carbon-14 pulse labeling. Biol Fert Soils 32:1–7CrossRefGoogle Scholar
- 23.Ludemann H, Arth I, Wiesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66:754–762CrossRefGoogle Scholar
- 24.Tessier A (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
- 25.Duarte B, Reboreda R, Caçador I (2008) Seasonal variation of Extracellular Enzymatic Activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 73:1056–1063CrossRefGoogle Scholar
- 26.ReboredaR CI (2007) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69:1655–1661CrossRefGoogle Scholar
- 27.Gadd G (2001) Accumulation and transformation of metals by microorganisms. In: Rehm HJ, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise: special processes. Wiley-VCH Verlag, WeinheimGoogle Scholar
- 28.Gadd G (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
- 29.Tabak H, Lens P, Hullebush E, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci BioTechnol 4:115–156CrossRefGoogle Scholar
- 30.Hullebusch E, Utomo S, Zandvoort M, Lens P (2005) Comparison of three sequential extraction procedures to describe metal fractioning in anaerobic granular sludges. Talanta 65:549–558CrossRefGoogle Scholar
- 31.Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritime and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290CrossRefGoogle Scholar
- 32.Delany S, Scott D, Dodman T, Stroud D (eds) (2009) An atlas of wader populations in Africa and Western Eurasia. Wetlands International, WageningenGoogle Scholar
- 33.Lévèque R (1966) Sobre Avifauna de Portugal en Invierno. Ardeola 11:101–107Google Scholar
- 34.Hafner H, Goldschmidt T, Goldschmidt T (1972) Dénombrementhivernal de la sauvagine au Portugal, du 19 au 25 janvier. Station Biologique de la Tour du Valat. Le Sambuc, FranceGoogle Scholar
- 35.Biber O, Hoffman L (1974) Dénombrement hivernal de la sauvagine au Portugal, du 15 au janvier. Cyanopica 1:25–37Google Scholar
- 36.CEMPA-Relatórios anuais das contagens de aves aquáticas, em Janeiro. www.icnb.pt
- 37.Rose L, Scott DA (1994) Waterfowl population estimates. IWRB Publication, SlimbridgeGoogle Scholar
- 38.Moreau RE (1972) The Palaearctic-African bird migration systems. Academic Press, LondonGoogle Scholar
- 39.Cramp S, Simmons KEL (eds) (1977) The birds of the Western Palearctic. Oxford University Press, OxfordGoogle Scholar
- 40.Teixeira AM (1985) Dispersão intertidal da avifauna invernante no estuário do Tejo. CEMPA-Secretaria de Estado do AmbienteGoogle Scholar
- 41.Serra Guedes R, Teixeira A (1991) O Flamingo em Portugal. In: Martin MR et al (eds) Reunion Tecnica sobre la Situacion y Problematica del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterraneo Occidental y Africa Noroccidental. Junta de AndaluciaGoogle Scholar
- 42.Johnson A (1991) An overview of the distribution, numbers, and movements of Flamingo in the Western Mediterranean and North-West Africa. In: Martin MR et al (eds) Reunion Tecnica sobre la Situacion y Problematica del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterraneo Occidental y Africa Noroccidental. Junta de AndaluciaGoogle Scholar
- 43.Martin MR, Ojeda SP, Martos MR, Johnson AR (1991) Reunion Tecnica sobre la Situacion y Problematica del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterraneo Occidental y Africa Noroccidental. Junta de AndaluciaGoogle Scholar
- 44.Mayaud N (1938) La gorgebleue à mirroir en France. Alauda 10:116–136Google Scholar
- 45.Constant P, Eybert MC (1994) Gorge-bleue à miroir Luscinia svecica., in Nouvel atlas des Oiseaux nicheurs. D. Yeatman-Berthelot, Jarry G, ParisGoogle Scholar
- 46.Constant P, Eybert MC (1995) Données sur la reproduction et l’hivernage de la Gorgebleue Lus-cinia svecica namnetum. Alauda 63:29–36Google Scholar
- 47.Eybert MC, Teixeira AM, Allano L, Bonnet P, Constant P (1989) Wintering passerine communities of some European Atlantic coastal areas. In: Conservation and development: the sustainable use of wetland resources. Proceedings of the third international wetlands conference, Rennes, FranceGoogle Scholar
- 48.Hampel H, Cattrijsse A, Elliott M (2005) Feeding habits of young predatory fishes in marsh creeks situated along the salinity gradient on the Schelde estuary, Belgium and The Netherlands. Helgol Mar Res 59:151–162CrossRefGoogle Scholar
- 49.Teixeira A (2012) Avifauna. In: Caçador et. al. Estudo de investigação, caracterização e valorização ambiental da Baía do Seixal – Comunidades Biológicas. Relatório Final, Maio. IO-FCULGoogle Scholar
- 50.Prater AJ (1981) Estuary birds of Britain and Ireland. T & AD Poyser, CaltonGoogle Scholar
- 51.Teixeira A (2010) Avifauna. In: Caçador et al (eds) Estudo de investigação, caracterização e valorização ambiental da Baía do Seixal – Comunidades Biológicas – Janeiro. IO-FCULGoogle Scholar
- 52.Rose L (1995) Where to watch birds in Spain and Portugal. Hamlyn, LondonGoogle Scholar