Atmospheric Tracers and the Monsoon System: Lessons Learnt from the 1991 Kuwait Oil Well Fires

Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


The smoke veil over the Arabian peninsula, the Arabian Sea and adjacent areas, fed by the burning Kuwaiti oil fields from February to October 1991, turned out to provide a key climate sensitivity ‘experiment’ on the global hydrological response to anthropogenic immissions. Though the menace of setting the oil wells alight failed to work as a deterrent and the Earth’s climate did not respond with a “nuclear winter” type ‘retaliatory strike’, the system was hit at a sensitive spot. Inherent climate variability notwithstanding, the 1991 boreal summer took an exceptional turn. Effects of the disturbance were blurred by spectacular evolutions in the atmospheric methane load, the fundamental economic transformation of that time, and the largest volcano eruption of the century, Mt. ;Pinatubo. The challenging mix of political, economic, geophysical and environmental dynamics and events forms the background of the combined data analysis and climate modelling approach presented which aims to rather disentangle the complex issue. The study comprises worldwide oil and gas production as economic proxies, global trace gas loads and growth rates (CH4, CO2), Kuwait fire source strengths and scenario estimation, and related climate model experiments—which lately led to the conception of low-dimensional organization of the monsoon system. Retrospective and prospective conclusions are offered.


General Circulation Model Wavelet Transform East Asian Summer Monsoon Match Pursuit Smoke Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This report refers to studies conducted (from time to time) over more than two decades and has recourse to results obtained with the indirect help of many authors. Detailed descriptions of the methods used, namely SSA (Vautard and Ghil, 1989), WT (Torrence and Compo, 1998) and MP (Mallat and Zhang, 1993), were especially important for own code developments. Graphics tools XvGr (Turner, 1992) and GraDS (Doty, 1992) have extensively been used and are referred to with due respect and gratitude. Invaluable data sources as cited are gratefully acknowledged, but a generous support has to be mentioned with special thanks: To enable direct comparison and to avoid mistakes due to their reconstruction from published PostScript figures, Ed Dlugokencky once provided the time series of deseasonalized CH4 and CO2 growth rates as obtained by the Carbon Cycle Group of the NOAA Climate Monitoring and Diagnostics Laboratory.


  1. Aldhous P (1991) Oil-well climate catastrophe? Nature 349(6305):96ADSGoogle Scholar
  2. Aleksandrov VV, Gates WL (1981) The performance of a coarse-grid version of the OSU two-level atmospheric GCM. Report No. 24, Climatic Research Institute, Oregon State University, CorvallisGoogle Scholar
  3. Andrae MO, Browell EV, Garstang M, Gregory GL, Harriss RC, Hill GF, Jacob DJ, Pereira MG, Sachse GW, Setzer AW, Dias PLS, Talbot RW, Torres AL (1988) Biomass-burning emissions and associated haze over Amazonia. J Geophys Res D 93(2):1509–1527CrossRefGoogle Scholar
  4. Anonymous (1988) Greater Burgan field record, issued April 1988. Petroconsultants S.A., GenevaGoogle Scholar
  5. Anonymous (1991) Kuwait’s oil sector at a glance. Oil Gas J 89(4):21Google Scholar
  6. Bakan S, Chlond A, Cubasch U, Feichter J, Graf H, Grassl H, Hasselmann K, Kirchner I, Latif M, Roeckner E, Sausen R, Schlese U, Schriver D, Schult I, Schumann U, Sielmann F, Welke W (1991) Climate response to smoke from the burning oil wells in Kuwait. Nature 351(6325):367–371ADSCrossRefGoogle Scholar
  7. Bjerkness J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97(3):163–172CrossRefADSGoogle Scholar
  8. Cachier H, Brèmond M-P, Buat-Mènard P (1989) Carbonaceous aerosols from different tropical biomass burning sources. Nature 340(6232):371–373ADSCrossRefGoogle Scholar
  9. Carl P (1988) Software engineering aspects of computational systems analysis in physics. In: Sydow A, Tzafestas SG, Vichnevetsky R (eds) Systems analysis and simulation 1988, vol II. Math Res 47:375–378Google Scholar
  10. Carl P (1991a) Dämmerung über dem Morgenland. Klimarisiken der Ölbrände am Golf (in German). Unpublished manuscriptGoogle Scholar
  11. Carl P (1991b) Notes on the climatic response in the aftermath of Gulf War II. Z Meteorol 41(6):476–480Google Scholar
  12. Carl P (1991c) Persistent localized lower troposphere smoke within the planetary monsoon system. Available from the author; submitted to Nature Nov. 21, Ms.-No. C11408Google Scholar
  13. Carl P (1992) Zur dynamischen Struktur des planetaren Monsuns (in German). Wiss. Z. Humboldt-Univ. Berlin. R Math Nat wiss 41(2):29–35MathSciNetGoogle Scholar
  14. Carl P (1994) Monsoon dynamics in a low-dimensional GCM. WCRP-84, WMO/TD-No. 619(II), WMO, Geneva, pp 773–780Google Scholar
  15. Carl P (1998) The 1991–1992 fluctuation in atmospheric methane – a tale on global climate dynamics and man’s interference. Manuscript submitted to Nature Sept. 12, Ms.-No. C09253 (1998). Report No. 8, Climate Dynamics Group, Berlin, GermanyGoogle Scholar
  16. Carl P (2011) MP based detection of synchronized motions across the instrumental climate record. In: Proceedings of the IEEE statistical signal processing workshop. IEEE, pp 557–560. 978-1-4577-0568-7/11Google Scholar
  17. Carl P (2013a) On the dynamical status of the climate system – I: a general circulation model en route to chaos. In: Stavrinides SG, Banerjee S, Caglar H, Ozer M (eds) Chaos and complex systems. Springer, Berlin/Heidelberg, pp 521–528. doi:10.1007/978-3-642-33914-1_73CrossRefGoogle Scholar
  18. Carl P (2013b) On the dynamical status of the climate system – II: synchronous motions galore across the records. In: Stavrinides SG, Banerjee S, Caglar H, Ozer M (eds) Chaos and complex systems. Springer, Berlin/Heidelberg, pp 529–539. doi:10.1007/978-3-642-33914-1_74CrossRefGoogle Scholar
  19. Carl P (2013c) A general circulation model en route to intraseasonal monsoon chaos. In: Banerjee S, Rondini L (eds) Applications of chaos and nonlinear dynamics in science and engineering, vol 3. Understanding complex systems, chap 3. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-34017-8_3 (in print)Google Scholar
  20. Carl P, Behrendt H (2008) Regularity based functional streamflow disaggregation. I. Comprehensive foundation. Water Resour Res 44(W02420). doi:10.1029/2004WR003724Google Scholar
  21. Carl P, Stenchikov GL (1988) Structural analysis of the climatic response to a nuclear war. In: Sydow A, Tzafestas SG, Vichnevetsky R (eds) Systems analysis and simulation 1988, vol II. Math Res 47:33–36Google Scholar
  22. Carl P, Worbs KD, Tschentscher I (1995) On a dynamic systems approach to atmospheric model intercomparison. WCRP-92, WMO/TD-No. 732. WMO, Geneva, pp 445–450Google Scholar
  23. Carl P, Eichler T, Kroschk S, Lönhardt H, Schimmel E, Tschentscher I, Worbs KD (1998) Konzeptionelle Studien zur Dynamik des Atmosphäre–Land–Systems (in German). Report No. 7, Climate Dynamics Group, Berlin, GermanyGoogle Scholar
  24. Carl P, Svirezhev Y, Stenchikov G (2008) Environmental and biospheric impacts of nuclear war. In: Jørgensen SE, Fath BD (eds) Global ecology, vol 2 of encyclopedia of ecology. Elsevier, Oxford, pp 1314–1321CrossRefGoogle Scholar
  25. Chen T-C, Tzeng R-Y, Yen M-C (1988) Development and life cycle of the Indian monsoon: effect of the 30–50 day oscillation. Mon Weather Rev 116(11):2183–2199ADSCrossRefGoogle Scholar
  26. Cox J (1991) Environmental consequences of a Gulf war. Manuscript prepared for Environmental Protection Bulletin. Institution of Chemical EngineersGoogle Scholar
  27. Crutzen P, Birks JW (1982) The atmosphere after a nuclear war: twilight at noon. AMBIO 11(2/3):114–125Google Scholar
  28. De US, Desai DS, Bias SCS (1992) Monsoon season (June–September 1991). Mausam 43(3):333–346Google Scholar
  29. Dettinger MD, Ghil M (1998) Seasonal and interannual variations of atmospheric CO2 and climate. Tellus B 50(1):1–24ADSCrossRefGoogle Scholar
  30. Deutscher Bundestag, Stenographischer Bericht, 2. Sitzung (14. Januar 1991) (in German; German Parliament, 12th Election Period, 2nd Session, January 14). Plenarprotokoll 12/2, BonnGoogle Scholar
  31. Dlugokencky EJ, Masarie KA, Lang PM, Tans PP (1998) Continuing decline in the growth rate of the atmospheric methane burden. Nature 393(6684):447–450ADSCrossRefGoogle Scholar
  32. Dlugokencky EJ, Masarie KA, Lang PM, Tans PP, Steele LP, Nisbet EG (1994a) A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992. Geophys Res Lett 21(1):45–48ADSCrossRefGoogle Scholar
  33. Dlugokencky EJ, Masarie KA, Lang PM, Tans PP, Steele LP, Nisbet EG (1994b) Reply to “Comments on ‘A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992”’. Geophys Res Lett 21(22):2447–2448ADSCrossRefGoogle Scholar
  34. Dlugokencky EJ, Steele LP, Lang PM, Masarie KA (1994c) The growth rate and distribution of atmospheric methane. J Geophys Res D 99(8):17,021–17,043CrossRefGoogle Scholar
  35. Doty BE (1992) Using the Grid Analysis and Display System (GrADS). Manual, Version 1.3.1., University of MarylandGoogle Scholar
  36. Ferrare RA, Fraser RS, Kaufman YJ (1990) Satellite remote sensing of large scale air pollution—Measurement of forest fire smoke. J Geophys Res D 95(7):9911–9925CrossRefGoogle Scholar
  37. Findlater J (1969) A major low-level air current near the Indian Ocean during the northern summer. Quart J R Meteorol Soc 95(404):362–380CrossRefADSGoogle Scholar
  38. Gabor D (1946) Theory of communication, part III. J IEE 93:429–457Google Scholar
  39. Garcia RR, Salby ML (1987) Transient response to localized episodic heating in the tropics, II: Far-field behavior. J Atmos Sci 44(2):499–530ADSCrossRefGoogle Scholar
  40. Gates WL, Batten ES, Kahle AB, Nelson AB (1971) A documentation of the Mintz–Arakawa two-level atmospheric General Circulation Model. R-877-ARPA. Rand Corporation, Santa MonicaGoogle Scholar
  41. Giorgi F, Chameides WL (1986) Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations of a General Circulation Model. J Geophys Res D 91(13):14,367–14,376CrossRefGoogle Scholar
  42. Golitsyn GS, Phillips NA (1986) Possible climatic consequences of a major nuclear war. Report of the world climate programme (WCP–113), WMO/TD No. 99, Geneva, p 21Google Scholar
  43. Harwell MA, Hutchinson TC, Cropper WP, Jr. Harwell CC, Grover HD (1985) SCOPE 28: environmental consequences of nuclear war. Vol II. Ecological and agricultural effects. Wiley, Chichester, p 523. (2nd edn with an updating preface (1989))Google Scholar
  44. His Majesty King Hussein Bin Talal of the Royal Hashemite Kingdom of Jordan (1990) Address to the second world climate conference, Nov. 6 1990. In: Jäger J, Ferguson HL (eds) Climate change: science, impacts and policy. In: Proceedings of the second world climate conference, Cambridge, pp 511–513Google Scholar
  45. Hogan KB, Harriss RC (1994) Comment on ‘A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992’ by E. J. Dlugokencky et al. Geophys Res Lett 21(22):2445–2446ADSCrossRefGoogle Scholar
  46. Hulstrom RL, Stoffel TL (1990) Some effect of the Yellowstone fire smoke cloud on incident solar irradiance. J Climate 3(12):1485–1490ADSCrossRefGoogle Scholar
  47. Husain T (1994a) Extinguishing of Kuwait oil fires—challenges, technology, and success. Atmos Environ 28(13):2139–2147ADSCrossRefGoogle Scholar
  48. Husain T (1994b) Kuwait oil fires—modeling revisited. Atmos Environ 28(13):2211–2226ADSCrossRefGoogle Scholar
  49. Janowiak JE (1993) The global climate for September–November 1991: Warm (ENSO) episode conditions strengthen. J Climate 6(8):1616–1638ADSCrossRefGoogle Scholar
  50. Jones PD (1994) Hemispheric surface air temperature variations: a reanalysis and an update to 1993. J Climate 7(11):1794–1802ADSCrossRefGoogle Scholar
  51. Krishnamurti TN, Bhalme HN (1976) Oscillations of a monsoon system. Part I. Observational aspects. J Atmos Sci 33(10):1937–1954Google Scholar
  52. Krishnamurti TN, Subrahmanyam D (1982) The 30–50 day mode at 850 mb during MONEX. J Atmos Sci 39(9):2088–2095ADSCrossRefGoogle Scholar
  53. Krishnamurti TN, Jayakumar PK, Sheng J, Surgi N, Kumar A (1985) Divergent circulations on the 30 to 50 day time scale. J Atmos Sci 42(4):364–375ADSCrossRefGoogle Scholar
  54. Krishnamurti TN, Sinha NC, Krishnamurti R, Osterhof D, Comeaux J (1992) Angular momentum, LOD and monsoonal LF mode. J Meteorol Soc Jpn 70(1):131–165Google Scholar
  55. Lau KM, Lim HJ (1984) On the dynamics of equatorial forcing of climate teleconnections. J Atmos Sci 41(2):161–176ADSCrossRefGoogle Scholar
  56. Lau KM, Yang GJ, Shen SH (1988) Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon Weather Rev 116(1):18–37ADSCrossRefGoogle Scholar
  57. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22(23):3195–3198ADSCrossRefGoogle Scholar
  58. Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Climate 4(5):517–528Google Scholar
  59. Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B 50(2):128–150ADSCrossRefGoogle Scholar
  60. Lorenz EN (1982) Low-order models of atmospheric circulation. J Meteorol Soc Jpn 60(1):255–267Google Scholar
  61. Lowe DC, Manning MR, Brailsford, GW, Bromley AM (1997) The 1991–1992 atmospheric methane anomaly: southern hemisphere 13C decrease and growth rate fluctuations. Geophys Res Lett 24(8):857–860ADSCrossRefGoogle Scholar
  62. MacCracken MC, Penner JE (1987) Under-examined aspects of the potential environmental effects of nuclear war. UCID-21111, Lawrence Livermore National LaboratoryGoogle Scholar
  63. Mallat SG, Zhang Z (1993) Matching pursuits with time–frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415ADSCrossRefMATHGoogle Scholar
  64. Meehl GA (1997) The South Asian monsoon and the tropospheric biennial oscillation. J Climate 10(8):1921–1943ADSCrossRefGoogle Scholar
  65. Mo KC (1993) The global climate of September–November 1990: ENSO–like warming in the western pacific and strong ozone depletion over Antarctica. J Climate 6(7):1375–1391ADSCrossRefGoogle Scholar
  66. Oil Gas Journal 80–90 (1982–1992)Google Scholar
  67. Oil gas journal data book (1984–1998 edn). PennWells, TulsaGoogle Scholar
  68. Oil Gas Journal Data Book (1990) 1990 edn. PennWells, TulsaGoogle Scholar
  69. Penner JE (1986) Uncertainties in the smoke source term for ‘nuclear winter’ studies. Nature 29(6094):222–226ADSCrossRefGoogle Scholar
  70. Philips D (ed) (1995) The global climate system review (climate system monitoring June 1991–November 1993). WMO–IP No. 819, World Meteorological Organization, Geneva. ISBN 92-63-10819-6Google Scholar
  71. Pittock AB, Ackerman TP, Crutzen PJ, MacCracken MC, Shapiro CS, Turco RP (1986) SCOPE 28: environmental consequences of nuclear war. Vol I. Physical and atmospheric effects. Wiley, Chichester, p 359. (2nd edn with an updating preface (1989))Google Scholar
  72. Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. Reidel, HinghamCrossRefGoogle Scholar
  73. Pueschel RF, Livingston JM (1990) Aerosol spectral optical depths: jet fuel and forest fire smoke. J Geophys Res D 95(13):22,417–22,422CrossRefGoogle Scholar
  74. Robock A (1988) Enhancement of surface cooling due to forest fire smoke. Science 242(4850):911–913ADSCrossRefGoogle Scholar
  75. Seacor JE (1994) Environmental terrorism: lessons from the oil fires of Kuwait. Am Univ Int Law Rev 10(1):481–523Google Scholar
  76. Segal M, Weaver J, Purdom JFW (1989) Some effects of the Yellowstone fire plume on northeast Colorado at the end of summer 1988. Mon Weather Rev 117(10):2278–2284ADSCrossRefGoogle Scholar
  77. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of Carbon between the biosphere and the atmosphere from biomass burning. Clim Chang 2(3):207–247CrossRefGoogle Scholar
  78. Setzer AW, Pereira MC (1991) Amazon biomass burning in 1987 and an estimate of their tropospheric emissions. AMBIO 20(1):19–22Google Scholar
  79. Small RD (1991) Environmental impact of fires in Kuwait. Nature 350(6313):111–112ADSCrossRefGoogle Scholar
  80. Stenchikov GL, Carl P (1985) Climatic consequences of nuclear war: sensitivity against large–scale inhomogeneities in the initial atmospheric pollutions. GDR Academy of Science and Physical Society, BerlinGoogle Scholar
  81. Subrahmanyam K, Carasales JC, Fakhr A, Müller M, Osgood RE, Svensson U, Wegener H, Zhurkin VV (1987) Study on deterrence. United Nations Publication A/41/432. United Nations, New York. ISBN 92-1-142127-6Google Scholar
  82. Swetnam TW, Betancourt JL (1990) Fire–southern oscillation relations in the southwestern United States. Science 249(4972):1017–1020ADSCrossRefGoogle Scholar
  83. Thompson SL, Aleksandrov VV, Stenchikov GL, Schneider SH, Covey C, Chervin RM (1984) Global climatic consequences of nuclear war: simulations with three dimensional models. AMBIO 13(4):236–243Google Scholar
  84. Thunborg AI et al (1981) Comprehensive study on nuclear weapons – report of the secretary-general. United Nations Publication A/35/392, UN Study Series Disarmament, No. 1. United Nations, New YorkGoogle Scholar
  85. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  86. Tschentscher I, Worbs KD, Carl P (1994) Frequency drift and retreat variability of a GCM’s monsoon oscillator. WCRP-84, WMO/TD-No. 619(II), WMO, Geneva, pp 781–788Google Scholar
  87. Turco RP, Toon OB, Ackerman TP, Pollack JB, Sagan C (1983) Nuclear winter: global consequences of multiple nuclear explosions. Science 222(4630):1283–1292ADSCrossRefGoogle Scholar
  88. Turco RP, Toon OB, Ackerman TP, Pollack JB, Sagan C (1990) Climate and smoke: an appraisal of nuclear winter. Science 247(4939):166–176ADSCrossRefGoogle Scholar
  89. Turner PJ (1992) ACE/gr user’s manual. Graphics for exploratory data analysis. Software documentation series, SDS3, 91–11Google Scholar
  90. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35(3):395–424MathSciNetADSCrossRefMATHGoogle Scholar
  91. Vautard R, Yiou P, Ghil M (1992) Singular–spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58(1–4):95–126ADSCrossRefGoogle Scholar
  92. Veltishchev NN, Ginzburg AS, Golitsyn GS (1988) Climatic effects of mass fire (in Russian). Izvestiya – Fiz Atmos Okeana 24:296–304Google Scholar
  93. Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoon: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14,451–14,510ADSCrossRefGoogle Scholar
  94. Wexler H (1950) The great smoke pall—September 24–30, 1950. Weatherwise 3(6):129–134, 142Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.ASWEX – Applied Water ResearchBerlinGermany

Personalised recommendations