Derivation and Expansion of Human Embryonic Stem Cells Under Xeno-Free, Defined Conditions

Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 11)

Abstract

Human embryonic stem cells (hESCs) hold great promise in regenerative medicine and cell therapy due to their unique properties: unlimited self-renewal and the pluripotency to differentiate into all cell lineages in the body. However, the overwhelming majority of currently available hESC lines have been directly or indirectly exposed to materials containing animal-derived components during their derivation, propagation, and cryopreservation. The use of animal-derived components would prevent the use of hESCs for clinical purposes, due to the possibility of xenogeneic bimolecule and pathogen contamination. Therefore, the establishment of clinical-grade hESC lines in xeno-free, chemically defined conditions is the first and key step. In this chapter, we review and summarize the history and current state of derivation, propagation and expansion of hESCs in static and suspension cultures in xeno-free, defined conditions. The main part of this review focuses on the recent advances in the generation and expansion of hESCs in xeno-free, chemically defined conditions. Based on previous studies, we also put forward the possible means for deriving and expanding hESC lines in xeno-free, defined conditions under current good manufacturing process (cGMP) standards that will enable the generation of clinical-grade hESC lines for the clinical purposes.

Keywords

Clinical-Grade hESCs Culture and expansion Dissociation Human embryonic stem cells (hESCs) Passaging Suspension culture Xeno-Free (XF) 

References

  1. Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H (2012) Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 18:831–851 [Epub ahead of print]PubMedCrossRefGoogle Scholar
  2. Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6:248–259PubMedCrossRefGoogle Scholar
  3. Bajpai R, Lesperance J, Kim M, Terskikh AV (2008) Efficient propagation of single cells accutase-dissociated human embryonic stem cells. Mol Reprod Dev 75:818–827PubMedCrossRefGoogle Scholar
  4. Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz Gerald C, Zhang K, Melton DA, Eggan K (2009) Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4:103–106PubMedCrossRefGoogle Scholar
  5. Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu SJ, Zdravkovic T, Ilic D, Genbacev O, Fisher S, Krtolica A, Lanza R (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117PubMedCrossRefGoogle Scholar
  6. Ellerström C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, Hyllner J, Semb H (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24:2170–2176PubMedCrossRefGoogle Scholar
  7. Ellerström C, Hyllner J, Strehl R (2010) Single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method. Methods Mol Biol 584:121–134PubMedCrossRefGoogle Scholar
  8. Gavrilov S, Papaioannou VE, Landry DW (2009) Alternative strategies for the derivation of human embryonic stem cell lines and the role of dead embryos. Curr Stem Cell Res Ther 4:81–86PubMedCrossRefGoogle Scholar
  9. Gokhale PJ, Healy L, Holm F, Hovatta O, Knowles BB, Ludwig TE, McKay RD, Miyazaki T, Nakatsuji N, Oh SK, Pera MF, Rossant J, Stacey GN, Suemori H (2010) Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim 46:247–258PubMedCrossRefGoogle Scholar
  10. Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, Ogilvie C, Braude P (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128PubMedCrossRefGoogle Scholar
  11. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485PubMedCrossRefGoogle Scholar
  12. Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods 16:573–582PubMedCrossRefGoogle Scholar
  13. Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91:688–698PubMedCrossRefGoogle Scholar
  14. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232PubMedCrossRefGoogle Scholar
  15. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28:606–610PubMedCrossRefGoogle Scholar
  16. Meng G, Liu S, Li X, Krawetz R, Rancourt DE (2010) Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol 88:479–490PubMedCrossRefGoogle Scholar
  17. Meng G, Liu S, Rancourt DE (2012) Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev 21:2036–2048 [Epub ahead of print]PubMedCrossRefGoogle Scholar
  18. Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2:219–230PubMedCrossRefGoogle Scholar
  19. Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32PubMedCrossRefGoogle Scholar
  20. Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H (2007) Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod 22:1231–1238PubMedCrossRefGoogle Scholar
  21. Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B, Miettinen S, Narkilahti S, Kerkelä E, Aalto-Setälä K, Otonkoski T, Suuronen R, Hovatta O, Skottman H (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic induced pluripotent and adipose stem cells. PLoS One 5:e10246PubMedCrossRefGoogle Scholar
  22. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404PubMedCrossRefGoogle Scholar
  23. Rodríguez CI, Galán A, Valbuena D, Simón C (2006) Derivation of clinical grade human embryonic stem cells. Reprod Biomed Online 12:112–118PubMedCrossRefGoogle Scholar
  24. Simón C, Escobedo C, Valbuena D, Genbacev O, Galan A, Krtolica A, Asensi A, Sánchez E, Esplugues J, Fisher S, Pellicer A (2005) First derivation in Spain of human embryonic stem cell lines: use of long-term cryopreserved embryos and animal-free conditions. Fertil Steril 83:246–249PubMedCrossRefGoogle Scholar
  25. Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4:165–179PubMedCrossRefGoogle Scholar
  26. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28:361–364PubMedCrossRefGoogle Scholar
  27. Ström S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Stromberg AM, Blennow E, Hovatta O (2007) Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 22:3051–3058PubMedCrossRefGoogle Scholar
  28. Suss-Toby E, Gerecht-Nir S, Amit M, Manor D, Itskovitz- Eldor J (2004) Derivation of a diploid human embryonic stem cell line from a mononuclear zygote. Hum Reprod 19:670–675PubMedCrossRefGoogle Scholar
  29. Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zengm X (2009) Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS One 4:e6233PubMedCrossRefGoogle Scholar
  30. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  31. Vemuri MC, Schimmel T, Colls P, Munne S, Cohen J (2007) Derivation of human embryonic stem cells in xeno-free conditions. Methods Mol Biol 407:1–10PubMedCrossRefGoogle Scholar
  32. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28:581–583PubMedCrossRefGoogle Scholar
  33. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686PubMedCrossRefGoogle Scholar
  34. Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations