Advertisement

GP63 Function in the Interaction of Trypanosomatids with the Invertebrate Host: Facts and Prospects

  • Claudia M. d’Avila-LevyEmail author
  • Ellen C. F. Altoé
  • Lívia A. Uehara
  • Marta H. Branquinha
  • André L. S. Santos
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 74)

Abstract

The GP63 of the protozoan parasite Leishmania is a highly abundant zinc metallopeptidase, mainly glycosylphosphatidylinositol-anchored to the parasite surface, which contributes to a myriad of well-established functions for Leishmania in the interaction with the mammalian host. However, the role of GP63 in the Leishmania-insect vector interplay is still a matter of controversy. Data from GP63 homologues in insect and plant trypanosomatids strongly suggest a participation of GP63 in this interface, either through nutrient acquisition or through binding to the insect gut receptors. GP63 has also been described in the developmental forms of Trypanosoma cruzi, Trypanosoma brucei and Trypanosoma rangeli that deal with the vector. Here, the available data from GP63 will be analyzed from the perspective of the interaction of trypanosomatids with the invertebrate host.

Keywords

GP63 Gene Bloodstream Form Invertebrate Host Procyclic Form Metacyclic Trypomastigotes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

EC

Enzyme class

EDTA

Ethylenediaminetetraacetic acid

EGTA

Ethylene glycol tetraacetic acid

GIPLs

Glycoinositolphospholipids

GPI

Glycosylphosphatidylinositol

GPI-PLC

Glycosylphosphatidylinositol-phospholipase C

HIV

Human immunodeficiency virus

LPG

Lipophosphoglycan

MSP

Major surface peptidase

PARP

Procyclic acidic repetitive protein

PSP

Promastigote surface peptidase

VSG

Glycosylphosphatidylinositol-anchored variant surface protein

Notes

Acknowledgments

 This study was supported by grants from the following Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq), Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ) and Fundação Oswaldo Cruz (FIOCRUZ).

References

  1. Almeida FV, Branquinha MH, Giovanni-De-Simone S et al (2003) Extracellular metalloproteinase activity in Phytomonas françai. Parasitol Res 89:320–322PubMedGoogle Scholar
  2. Alvarez VE, Niemirowicz GT, Cazzulo JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy andprogrammed cell death. Biochim Biophys Acta 1824:195–206PubMedCrossRefGoogle Scholar
  3. Bangs JD, Ransom DM, McDowell MA et al (1997) Expression of bloodstream variant surface glycoproteins in procyclic stage Trypanosoma brucei: role of GPI anchors in secretion. EMBO J 16:4285–4294PubMedCrossRefGoogle Scholar
  4. Bangs JD, Ransom DM, Nimicket (2001) In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetric metalloprotease inhibitors. Mol Biochem Parasitol 114:111–117PubMedCrossRefGoogle Scholar
  5. Basombrío MA, Gómez L, Padilla AM et al (2002) Targeted deletion of the gp72 gene decreases the infectivity of Trypanosoma cruzi from mice and insect vectors. J Parasitol 88:489–493PubMedGoogle Scholar
  6. Bass KE, Wang CC (1991) The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage. Mol Biochem Parasitol 44:261–270PubMedCrossRefGoogle Scholar
  7. Bonaldo MC, d’Escoffier LN, Salles JM (1991) Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp Parasitol 73:44–51PubMedCrossRefGoogle Scholar
  8. Bouvier J, Etges RJ, Bordier C (1985) Identification and purification of membrane and soluble forms of the major surface protein of Leishmania promastigotes. J Biol Chem 260:15504–15509PubMedGoogle Scholar
  9. Bouvier J, Schneider P, Etges R et al (1990) Peptide substrate specificity of the membrane bound metalloprotease of Leishmania. Biochemistry 29:10113–10119PubMedCrossRefGoogle Scholar
  10. Branquinha MH, Vermelho AB, Goldenberg S et al (1996) Ubiquity of cysteine and metalloproteinase in a wide range of trypanosomatids. J Eukaryot Microbiol 43:131–135PubMedCrossRefGoogle Scholar
  11. Camargo EP (1999) Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42:29–112PubMedCrossRefGoogle Scholar
  12. Chicharro C, Alvar J (2003) Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol 97:75–78PubMedCrossRefGoogle Scholar
  13. Corrêa-da-Silva MS, Fampa P, Lessa LP et al (2006) Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis. Parasitol Res 99:384–391PubMedCrossRefGoogle Scholar
  14. Cuevas IC, Cazzulo JJ, Sanchez DO (2003) Gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infect Immun 71:5739–5749PubMedCrossRefGoogle Scholar
  15. d’Avila-Levy CM, Souza RF, Gomes RC (2003) A metalloproteinase extracellularly released by Crithidia deanei. Can J Microbiol 49:625–632PubMedCrossRefGoogle Scholar
  16. d’Avila-Levy CM, Araújo FM, Vermelho AB (2005) Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids. Parasitology 130:413–420PubMedCrossRefGoogle Scholar
  17. d’Avila-Levy CM, Dias FA, Nogueira de Melo AC (2006a) Insights into the role of gp63-like proteins in insect trypanosomatids. FEMS Microbiol Lett 254:149–156CrossRefGoogle Scholar
  18. d’Avila-Levy CM, Santos LO, Marinho FA (2006b) Gp63-like molecules in Phytomonas serpens: possible role on the insect interaction. Curr Microbiol 52:439–444PubMedCrossRefGoogle Scholar
  19. d’Avila-Levy CM, Santos LO, Marinho FA (2008) Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol 118:345–353PubMedCrossRefGoogle Scholar
  20. d’avila-Levy CM, Santos ALS, Cuervo P et al (2012) Applications of zymography (substrate-SDS-PAGE) for peptidase screening in a post-genomic era. In: Magdeldin S (Org) Gel electrophoresis – advanced techniques, 1ed. In Tech, RijekaGoogle Scholar
  21. de Assis RR, Ibraim IC, Nogueira PM (2012) Glycoconjugates in new world species of leishmania: polymorphisms in lipophosphoglycan and glyco inositol phospholipids and interaction with hosts. Biochim Biophys Acta 1820:1354–1365PubMedCrossRefGoogle Scholar
  22. De Jesus AR, Cooper R, Espinosa M et al (1993) Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein gp72 in the insect and mammalian stages of the life cycle. J Cell Sci 106:1023–1033PubMedGoogle Scholar
  23. de Sousa KP, Atouguia J, Silva MS (2010) Partial biochemical characterization of a metalloproteinase from the bloodstream forms of Trypanosoma brucei brucei parasites. Protein J 29:283–289PubMedCrossRefGoogle Scholar
  24. Dias FA, Santos ALS, Lery LM (2012) Evidence that a laminin-like insect protein mediates early events in the interaction of a phytoparasite with its Vector’s salivary gland. PLoS One 7(10):e48170CrossRefGoogle Scholar
  25. Elias CGR, Pereira FM, Silva BA et al (2006) Leishmanolysin (gp63 metallopeptidase)-like activity extracellularly released by Herpetomonas samuelpessoai. Parasitology 132:37–47PubMedCrossRefGoogle Scholar
  26. El-Sayed NM, Donelson JE (1997) African trypanosomes have differentially expressed genes encoding homologues of the leishmania GP63 surface protease. J Biol Chem 272:26742–26748PubMedCrossRefGoogle Scholar
  27. Elwasila M (1988) Leishmania tarentolae Wenyon, 1921 from the gecko Tarentola annularis in the Sudan. Parasitol Res 74:591–592PubMedCrossRefGoogle Scholar
  28. Ennes-Vidal V, Menna-Barreto RF, Santos ALS et al (2011) MDL28170, A calpain inhibitor, affects Trypanosoma cruzi Metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus Midgut. PLoS One 6:e18371PubMedCrossRefGoogle Scholar
  29. Etges R (1992) Identification of a surface metalloproteinase on 13 species of Leishmania isolated from humans, Crithidia fasciculata, and Herpetomonas samuelpessoai. Acta Trop 50:205–217PubMedCrossRefGoogle Scholar
  30. Etges RJ, Bouvier J, Bordier C (1986) The major surface protein of Leishmania promastigotes is a protease. J Biol Chem 261:9099–9101Google Scholar
  31. Ferreira KA, Ruiz JC, Dias FC et al (2010) Genome survey sequence analysis and identification of homologs of major surface protease (gp63) genes in Trypanosoma rangeli. Vector Borne Zoonotic Dis 10:847–853PubMedCrossRefGoogle Scholar
  32. Fong D, Chang KP (1982) Surface antigenic change during differentiation of a parasitic protozoan, Leishmania mexicana: identification by monoclonal antibodies. Proc Natl Acad Sci USA 79:7366–7370PubMedCrossRefGoogle Scholar
  33. Grandgenett PM, Coughlin BC, Kirchhoff LV (2000) Differential expression of GP63 genes in Trypanosoma cruzi. Mol Biochem Parasitol 110:409–415PubMedCrossRefGoogle Scholar
  34. Grandgenett PM, Otsu K, Wilson HR et al (2007) A function for a specific zinc metalloprotease of African trypanosomes. PLoS Pathog 3:1432–1445PubMedCrossRefGoogle Scholar
  35. Gruszynski AE, van Deursen FJ, Albareda MC et al (2006) Regulation of surface coat exchange by differentiating African trypanosomes. Mol Biochem Parasitol 147:211–223PubMedCrossRefGoogle Scholar
  36. Hajmová M, Chang KP, Kolli B et al (2004) Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis. Microb Infect 6:646–649CrossRefGoogle Scholar
  37. Inverso JA, Medina-Acosta E, O’connor J et al (1993) Crithida fasciculata contains a transcribed leishmanial surfasse peptidase (gp63) gene homologue. Mol Biochem Parasitol 57:47–54PubMedCrossRefGoogle Scholar
  38. Jaffe CL, Dwyer DM (2003) Extracellular release of the surface metalloprotease, gp63, from Leishmania and insect trypanosomatids. Parasitol Res 91:229–237PubMedCrossRefGoogle Scholar
  39. Joshi PB, Kelly BL, Kamhawi S et al (2002) Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 120:33–40PubMedCrossRefGoogle Scholar
  40. Kulkarni MM, Olson CL, Engman DM et al (2009) Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect Immun 77:2193–2200PubMedCrossRefGoogle Scholar
  41. LaCount DJ, Gruszynski AE, Grandgenett PM et al (2003) Expression and function of the Trypanosoma brucei major surface protease (Gp63) genes. J Biol Chem 278:24658–24664PubMedCrossRefGoogle Scholar
  42. Lepay DA, Nogueira N, Cohn Z (1983) Surface antigens of Leishmania donovani promastigotes. J Exp Med 157:1562–1572PubMedCrossRefGoogle Scholar
  43. Lowndes CM, Bonaldo MC, Thomaz N et al (1996) Heterogeneity of metalloprotease expression in Trypanosoma cruzi. Parasitol 112:393–399CrossRefGoogle Scholar
  44. Ma L, Chen K, Meng Q et al (2011) An evolutionary analysis of trypanosomatid GP63 proteases. Parasitol Res 109:1075–1084PubMedCrossRefGoogle Scholar
  45. MacGregor P, Matthews KR (2010) New discoveries in the transmission biology of sleeping sickness parasites: applying the basics. J Mol Med 88:865–871PubMedCrossRefGoogle Scholar
  46. Matteoli FP, d’Avila-Levy CM, Santos LO (2009) Roles of the endosymbiont and leishmanolysin-like molecules expressed by Crithidia deanei in the interaction with mammalian fibroblasts. Exp Parasitol 121:246–253PubMedCrossRefGoogle Scholar
  47. McGwire BS, Chang KP (1996) Posttranslational regulation of a leishmania HEXXH metalloprotease (gp63). The effects of site specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit. J Biol Chem 271:7903–7909PubMedCrossRefGoogle Scholar
  48. Nogueira de Melo AC, Giovanni-De-Simone S, Branquinha MH et al (2001) Crithidia guilhermei: purification and partial characterization of a 62-kDa extracellular metalloproteinase. Exp Parasitol 97:1–8PubMedCrossRefGoogle Scholar
  49. Nogueira de Melo AC, d’Avila-Levy CM, Dias FA (2006) Peptidases and gp63-like proteins in Herpetomonas megaseliae: possible involvement in the adhesion to the invertebrate host. Int J Parasitol 36:415–422PubMedCrossRefGoogle Scholar
  50. Nogueira NF, Gonzalez MS, Gomes JE et al (2007) Trypanosoma cruzi: involvement of glycoinositol phospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 116:120–128PubMedCrossRefGoogle Scholar
  51. Olivier M, Atayde VD, Isnard A et al (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 14:1377–1389PubMedCrossRefGoogle Scholar
  52. Pereira FM, Bernardo PS, Dias Junior PF et al (2009) Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells. Parasitol Res 104:347–353PubMedCrossRefGoogle Scholar
  53. Pereira FM, Santos-Mallet JR, Branquinha MH et al (2010a) Influence of leishmanolysin-like molecules of Herpetomonas samuelpessoai on the interaction with macrophages. Microbes Infect 12:1061–1070PubMedCrossRefGoogle Scholar
  54. Pereira FM, Dias FA, Elias CG et al (2010b) Leishmanolysin-like molecules in Herpetomonas samuelpessoai mediate hydrolysis of protein substrates and interaction with insect. Protist 161:589–602PubMedCrossRefGoogle Scholar
  55. Rawlings ND, Barret AJ, Baterman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350PubMedCrossRefGoogle Scholar
  56. Raymond F, Boisvert S, Roy G et al (2012) Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res 40:1131–1147PubMedCrossRefGoogle Scholar
  57. Santos ALS, Rodrigues ML, Alviano CS et al (2003) Herpetomonas samuelpessoai: dimethylsulfoxide-induced differentiation is influenced by proteinase expression. Curr Microbiol 46:11–17CrossRefGoogle Scholar
  58. Santos ALS, Abreu CM, Alviano CS et al (2005) Use of proteolytic enzymes as an additional tool for trypanosomatid identification. Parasitology 130:79–88PubMedCrossRefGoogle Scholar
  59. Santos ALS, Branquinha MH, d’Avila-Levy CM (2006) The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. An Acad Bras Cienc 78:687–714PubMedCrossRefGoogle Scholar
  60. Santos ALS, d’Avila-Levy CM, Elias CG (2007) Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens. Microbes Infect 9:915–921PubMedCrossRefGoogle Scholar
  61. Schneider P, Glaser TA (1993) Characterization of a surface metalloprotease from Herpetomonas samuelpessoai and comparison with Leishmania major promastigote surface protease. Mol Biochem Parasitol 58:277–282PubMedCrossRefGoogle Scholar
  62. Soteriadou KP, Remounds MS, Katsikas MC et al (1992) The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Leishmania mimics the Arg-Gly-Asp-Ser cell attachment region of fibronectin. J Biol Chem 267:13980–13985PubMedGoogle Scholar
  63. Teixeira MM, Borghesan TC, Ferreira RC et al (2011) Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterialsymbionts. Protist 162:503–524PubMedCrossRefGoogle Scholar
  64. Uehara LA, Moreira OC, Oliveira AC et al (2012) Cruzipain promotes Trypanosoma cruzi adhesion to Rhodniusprolixus midgut. PLoS Negl Trop Dis 6:e1958PubMedCrossRefGoogle Scholar
  65. Vermelho AB, Almeida FV, Bronzato LS et al (2003) Extracellular metalloproteinases in Phytomonas serpens. Can J Microbiol 49:221–224PubMedCrossRefGoogle Scholar
  66. Vickerman K (1965) Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature 208:762–766PubMedCrossRefGoogle Scholar
  67. Weinman D, Cheong WH (1978) Herpetomonas, with bacterium-like inclusions, in Malaysian Aedes aegypti and Aedes albopictus. J Protozool 25:167–169CrossRefGoogle Scholar
  68. Wilson V, Southern B (1979) Lizard leishmania. In: Lumsden W, Evans D (eds) Biology of kinetoplastida. Academic, New YorkGoogle Scholar
  69. Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infect Immun 78:22–31PubMedCrossRefGoogle Scholar
  70. Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of Leishmania sp. biosynthesis, regulation of expression and function. Mol Biochem Parasitol 132:1–16PubMedCrossRefGoogle Scholar
  71. Ziegelbauer K, Stahl B, Karas M et al (1993) Proteolytic release of cell surface proteins during differentiation of Trypanosoma brucei. Biochemistry 32:3737–3742PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Claudia M. d’Avila-Levy
    • 1
    Email author
  • Ellen C. F. Altoé
    • 1
  • Lívia A. Uehara
    • 1
  • Marta H. Branquinha
    • 2
  • André L. S. Santos
    • 2
  1. 1.Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC)Fundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil
  2. 2.Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations