Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure

  • Juliany Cola Fernandes Rodrigues
  • Joseane Lima Prado Godinho
  • Wanderley de Souza
Part of the Subcellular Biochemistry book series (SCBI, volume 74)

Abstract

Leishmania and Trypanosoma belong to the Trypanosomatidae family and cause important human infections such as leishmaniasis, Chagas disease, and sleeping sickness. Leishmaniasis, caused by protozoa belonging to Leishmania, affects about 12 million people worldwide and can present different clinical manifestations, i.e., visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), and post-kala-azar dermal leishmaniasis (PKDL). Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi and is mainly prevalent in Latin America but is increasingly occurring in the United States, Canada, and Europe. Sleeping sickness or human African trypanosomiasis (HAT), caused by two sub-species of Trypanosoma brucei (i.e., T. b. rhodesiense and T. b. gambiense), occurs only in sub-Saharan Africa countries. These pathogenic trypanosomatids alternate between invertebrate and vertebrate hosts throughout their lifecycles, and different developmental stages can live inside the host cells and circulate in the bloodstream or in the insect gut. Trypanosomatids have a classical eukaryotic ultrastructural organization with some of the same main organelles found in mammalian host cells, while also containing special structures and organelles that are absent in other eukaryotic organisms. For example, the mitochondrion is ramified and contains a region known as the kinetoplast, which houses the mitochondrial DNA. Also, the glycosomes are specialized peroxisomes containing glycolytic pathway enzymes. Moreover, a layer of subpellicular microtubules confers mechanic rigidity to the cell. Some of these structures have been investigated to determine their function and identify potential enzymes and metabolic pathways that may constitute targets for new chemotherapeutic drugs.

Keywords

Visceral Leishmaniasis Protozoan Parasite Cutaneous Leishmaniasis Human African Trypanosomiasis Bloodstream Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support has been provided to the authors by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Financiadora de Estudos e Projetos (FINEP). We are grateful to the following people that help with some images: Thiago Luiz de Barros Moreira, Juliana Vidal, Dr. Thais Cristina Souto Padron, Dr. Narcisa Leal da Cunha-e-Silva and Dr. Marcia Attias.

References

  1. Acestor N, Zíková A, Dalley RA et al (2011) Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics 10:1–14. doi: 10.1074/mcp.M110.006908 Google Scholar
  2. Adhiambo C, Forney JD, Asai DJ et al (2005) The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol Biochem Parasitol 143:216–225PubMedGoogle Scholar
  3. Aksoy S, Gibson WC, Lehane MJ (2003) Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. Adv Parasitol 53:1–83PubMedGoogle Scholar
  4. Alavi-Naini R, Fazaeli A, O’Dempsey T (2012) Topical treatments modalities for old world cutaneous leishmaniasis: a review. Prague Medical Rep 113:105–118Google Scholar
  5. Alberio SO, Dias SS, Faria FP et al (2004) Ultrastructural and cytochemical identification of megasome in Leishmania (Leishmania) chagasi. Parasitol Res 92:246–254PubMedGoogle Scholar
  6. Alexander J, Vickerman K (1975) Fusion of host cell secondary lysosomes with parasitophorous vacuole of Leishmania mexicana-infected macrophages. J Protozool 22:502–508PubMedGoogle Scholar
  7. Allen CL, Goulding D, Field MC (2003) Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 22:4991–5002PubMedGoogle Scholar
  8. Alvar J, Vélez IV, Bern C et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671PubMedGoogle Scholar
  9. Anderson WA, Ellis RA (1965) Ultrastructure of Trypanosoma lewisi: flagellum, microtubules and the kinetoplast. J Protozool 12:483–489Google Scholar
  10. Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49:1–70PubMedGoogle Scholar
  11. Bastin P, Pullen TJ, Moreira-Leite FF et al (2000) Inside and outside of the trypanosome flagellum: a multifunctional organelle. Microbes Infect 2:1865–1874PubMedGoogle Scholar
  12. Bates PA (1994) The developmental biology of Leishmania promastigotes. Exp Parasitol 79:215–218PubMedGoogle Scholar
  13. Batters C, Woodall KA, Toseland CP et al (2012) Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI. J Biol Chem 287:27556–27566PubMedGoogle Scholar
  14. Benchimol M, de Souza W (1980) Freeze-fracture study of the plasma membrane of Leishmania mexicana amazonensis. J Parasitol 66:941–947PubMedGoogle Scholar
  15. Bente M, Harder S, Wiesgigl M et al (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3:1811–1829PubMedGoogle Scholar
  16. Blum JA, Neumayr AL, Hatz CF (2012) Human African trypanosomiasis in endemic populations and travellers. Eur J Clin Microbiol Infect Dis 31:905–913PubMedGoogle Scholar
  17. Boatin BA, Wyatt GB, Wurapa FK et al (1986) Use of symptoms and signs for diagnosis of Trypanosoma brucei rhodesiense trypanosomiasis by rural health personnel. Bull World Health Organ 64:389–395PubMedGoogle Scholar
  18. Böhringer S, Hecker H (1974) Quantitative ultrastructural differences between strains of Trypanosoma brucei subgroup during transformation in blood. J Protozool 21:694–698PubMedGoogle Scholar
  19. Böhringer S, Hecker H (1975) Quantitative ultrastructural investigations of the life cycle of Trypanosoma brucei: a morphometric analysis. J Protozool 22:463–467PubMedGoogle Scholar
  20. Brennand A, Gualdrón-López M, Coppens I et al (2011) Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177:83–89PubMedGoogle Scholar
  21. Brun R, Krassner SM (1976) Quantitative ultrastructural investigations of mitochondrial development in Leishmania donovani during transformation. J Protozool 23:493–497PubMedGoogle Scholar
  22. Bunn MM, Soares TC, Angluster J et al (1977) Effect of 2-deoxy-D-glucose on Herpetomonas samuelpessoai. Z Parasitenkd 52:245–256PubMedGoogle Scholar
  23. Burton P, Dusanic DG (1968) Fine structure and replication of the kinetoplast of Trypanosoma lewisi. J Cell Biol 39:318–331PubMedGoogle Scholar
  24. Cavalcanti DP, Fragoso SP, Goldenberg S et al (2004) The effect of topoisomerase II inhibitors on the kinetoplast ultrastructure. Parasitol Rex 94:439–448Google Scholar
  25. Cevallos AM, Segura-Kato YX, Merchant-Larios H et al (2011) Trypanosoma cruzi: multiple actin isovariants are observed along different developmental stages. Exp Parasitol 127:249–259PubMedGoogle Scholar
  26. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134Google Scholar
  27. Chaudhuri M, Ott RD, Hill GC (2006) Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 22:485–491Google Scholar
  28. Clarckson AB Jr, Bienen EJ, Pollakis G et al (1989) Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem 264:17770–17776Google Scholar
  29. Clayton CE, Michels P (1996) Metabolic compartmentation in African trypanosomes. Parasitol Today 12:465–471PubMedGoogle Scholar
  30. Cunha-e-Silva N, Sant’Anna C, Pereira MG et al (2006) Reservosomes: multipurpose organelles? Parasitol Res 99:325–327PubMedGoogle Scholar
  31. Dai K, Yuan G, Liao S et al (2011) 1H, 13C and 15N resonance assignments for a putative ADF/Cofilin from Trypanosoma brucei. Biomol NMR Assign 5:249–251PubMedGoogle Scholar
  32. de Jesus AR, Cooper R, Espinosa M et al (1993) Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein GP72 in the insect and mammalian stages of the life cycle. J Cell Sci 106:1023–1033PubMedGoogle Scholar
  33. de Souza W (1984) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86:197–283PubMedGoogle Scholar
  34. de Souza W (1989) Components of the cell surface of trypanosomatids. Prog Protistol 3:87–184Google Scholar
  35. de Souza L (1995) Structural organization of the cell surface of pathogenic protozoa. Micron 26:405–430PubMedGoogle Scholar
  36. de Souza W (2002) Special organelles of some pathogenic protozoa. Parasitol Res 88:1013–1025PubMedGoogle Scholar
  37. de Souza W (2008) An introduction to the structural organization of parasitic protozoa. Curr Pharm Des 14:822–838PubMedGoogle Scholar
  38. de Souza W, Attias M (2010) Subpellicular microtubules in Apicomplexa and Trypanosomatids. In: de Souza W (ed) Structures and organelles in pathogenic protists, microbiology monographs 17. Springer, HeidelbergGoogle Scholar
  39. de Souza W, Souto-Padron T (1980) The paraxial structure of the flagellum of trypanosomatidae. J Parasitol 66:229–236PubMedGoogle Scholar
  40. de Souza W, Angluster J, Bunn MM (1977) Cytochemical detection of cytochrome oxidase on the mitochondrion-kinetoplast complex of Herpetomonas samuelpessoai. Influence of the growth medium. J Submicr Cytol 9:355–361Google Scholar
  41. de Souza W, Martinez-Palomo A, Gonzalez-Robles A (1978) The cell surface of Trypanosoma cruzi: cytochemistry and freeze-fracture. J Cell Sci 33:285–299PubMedGoogle Scholar
  42. de Souza W, Attias M, Rodrigues JCF (2009a) Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 41:2069–2080PubMedGoogle Scholar
  43. de Souza W, Sant’Anna C, Cunha-e-Silva NL (2009b) Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 44:67–124PubMedGoogle Scholar
  44. de Souza W, Carvalho, TMU, Barrias ES (2010) Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol, article ID 295394, doi: 10.1155/2010/295394
  45. Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–381PubMedGoogle Scholar
  46. Docampo R, Scott DA, Vercesi AE et al (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310:1005–1012PubMedGoogle Scholar
  47. Docampo R, de Souza MK et al (2005) Acidocalcisomes-conserved from bacteria to man. Nat Rev Microbiol 3:251–261PubMedGoogle Scholar
  48. Dorlo TPC, Balasegaram M, Beijnen JH et al (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597PubMedGoogle Scholar
  49. Durieux PO, Schütz P, Brun R et al (1991) Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. Mol Biochem Parasitol 45:19–27PubMedGoogle Scholar
  50. Duszenko M, Ginger ML, Brennand A et al (2011) Autophagy in protists. Autophagy 7:127–158PubMedGoogle Scholar
  51. Fampa P, Correa-da-Silva MS, Lima DC et al (2003) Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines. Int J Parasitol 33:1019–1026PubMedGoogle Scholar
  52. Faria-e-Silva PM, Attias M, de Souza W (2000) Biochemical and ultrastructural changes in Herpetomonas roitmani related to the energy metabolism. Biol Cell 92:39–47PubMedGoogle Scholar
  53. Farina M, Attias M, Souto-Padron T et al (1986) Further studies on the organization of the paraxial rod of trypanosomatids. J Protozool 33:552–557Google Scholar
  54. Fenn K, Matthews KR (2007) The cell biology of Trypanosoma brucei differentiation. Curr Op Microbiol 10:539–546Google Scholar
  55. Ferguson MAJ (1997) The surface glycoconjugates of trypanosomatid parasites. Philos Trans R Soc Lond B Biol Sci 352:1295–1302PubMedGoogle Scholar
  56. Field MC, Carrington M (2004) Intracellular membrane transport systems in Trypanosoma cruzi. Traffic 5:1–9Google Scholar
  57. Figueiredo RCBQ, Soares MJ (2000) Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes. Parasitol Res 86:413–418PubMedGoogle Scholar
  58. Freymuller E, Camargo EP (1981) Ultrastructural differences between species of trypanosomatids with and without endosymbiont. J Protozool 16:160–166Google Scholar
  59. Ganguly NK (2002) Oral miltefosine may revolutionize treatment of visceral leishmaniasis. The potential impact of miltefosine on visceral leishmaniasis in India. TDR News 68:2Google Scholar
  60. Girard-Dias W, Alcântara CL, Cunha-e-Silva NL et al (2012) On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Hitochem Cell Biol 138:821–831Google Scholar
  61. Gluenz E, Höög JL, Smith AE et al (2010) Beyond 9 + 0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J 24:3118–3121Google Scholar
  62. Gonçalves RLS, Menna-Barreto RFS, Polycarpo CR et al (2011) A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 43:651–661PubMedGoogle Scholar
  63. Grunferlder CG, Engstler M, Weise F et al (2003) Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carries. Mol Biol Cell 14:2029–2040Google Scholar
  64. Gualdrón-López M, Brennand A, Hannaert V et al (2012) When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 42:1–20PubMedGoogle Scholar
  65. Hajduk SL (1984) Antigenic variation during the developmental cycle of Trypanosoma brucei. J Protozool 31:41–47PubMedGoogle Scholar
  66. Harder S, Thiel M, Clos J et al (2010) Characterization of a subunit of the outer dynein arm docking complex necessary for correct flagellar assembly in Leishmania donovani. PLoS One 4:e586Google Scholar
  67. Hasne MP, Coppens I, Soysa R et al (2010) A high-affinity putrescine-cadeverine transporter from Trypanosoma cruzi. Mol Microbiol 76:78–91PubMedGoogle Scholar
  68. Herman M, Pérez-Morga D, Schtickzelle N et al (2008) Turnover of glycosomes during differentiation of Trypanosoma brucei. Autophagy 4:294–308PubMedGoogle Scholar
  69. Hill GC, Anderson WA (1969) Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata. Correlation of fine structure changes with decreased mitochondrial enzyme activity. J Cell Biol 41:547–561PubMedGoogle Scholar
  70. Höög JL, Bouchet-Marquis C, McIntosh JR et al (2012) Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol 178:189–198PubMedGoogle Scholar
  71. Igoilho-Esteve M, Maugeri D, Stern AL et al (2007) The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease. An Acad Bras Cienc 79:649–663Google Scholar
  72. Kakkar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305:235–253PubMedGoogle Scholar
  73. Kollien AH, Grospietsch T, Kleffmann T et al (2001) Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J Insect Physiol 47:739–747PubMedGoogle Scholar
  74. Kuhls K, Alam MZ, Cupolillo L et al (2011) Comparative microsatellite typing of new world Leishmania infantum reveals low heterogeneity among populations and its recent old world origin. PLoS Negl Trop Dis 5:e1155PubMedGoogle Scholar
  75. Kumar G, Srivastava R, Mitra K et al (2012) Overexpression of S4D mutant of Leishmania donovani ADF/Cofilin impairs flagellum assembly by affecting actin dynamics. Eukaryot Cell 11:752–760PubMedGoogle Scholar
  76. LaCount DJ, Barrett B, Donelson JE (2002) Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem 277:17580–17588PubMedGoogle Scholar
  77. Le Loup G, Pialoux G, Lescure FX (2011) Updated in treatment of Chagas disease. Curr Op Infect Dis 24:428–434Google Scholar
  78. Li Z-H, Alvarez VE, de Gaudenzi JG et al (2011) Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J Biol Chem 286:43959–43971PubMedGoogle Scholar
  79. Liu Y, Englund PT (2007) Te rotational dynamics of kinetoplast DNA replication. Mol Microbiol 64:676–690PubMedGoogle Scholar
  80. Liu B, Liu Y, Motyka SA et al (2005) Fellowship of the rings: the replication of the kinetoplast DNA. Trends Parasitol 21:363–369PubMedGoogle Scholar
  81. Lodge R, Descoteaux A (2008) Leishmania invasion and phagosome biogenesis. In: Burleigh BA, Soldati-Favre D (eds) Molecular mechanisms of parasite invasion, subcellular biochemistry, vol 47. Springer, New York, pp 174–181Google Scholar
  82. Lorente SO, Rodrigues JCF, Jiménez CJ et al (2004) Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 48:2937–2950PubMedGoogle Scholar
  83. Lukes J, Guilbride DL, Votýpka J et al (2002) Kinetoplast DNA network: evolution of an improbable structure. Euk Cell 1:495–502Google Scholar
  84. MacLean LM, Odiit M, Chisi JE et al (2010) Focus-specific clinical profiles in human African trypanosomiasis caused by Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 4:e906PubMedGoogle Scholar
  85. Maga JA, Sherwin T, Francis S et al (1999) Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure. J Cell Sci 112:2753–2763PubMedGoogle Scholar
  86. Malckow D, Lusche DF, Schlatterer C et al (2006) The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx. BMC Dev Biol 6:31Google Scholar
  87. Malvy D, Chappuis F (2011) Sleeping sickness. Clin Microbiol Infect 17:986–995PubMedGoogle Scholar
  88. Martinez-Palomo A, de Souza W, Gonzalez-Robles A (1976) Topographical differences in the distribution of surface coat components and intramembranous particles. A cytochemical and freeze-fracture study in culture forms of Trypanosoma cruzi. J Cell Biol 69:507–513PubMedGoogle Scholar
  89. McConville MJ, Mullin KA, Ilgoutz SC et al (2002) Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 66:122–154PubMedGoogle Scholar
  90. Melo LDB, Sant’anna C, Reis SA et al (2008) Evolutionary conservation of actin-binding proteins in Trypanosoma cruzi and unusual subcellular localization of the actin homologue. Parasitol 135:955–965Google Scholar
  91. Meyer H (1968) The fine structure of the flagellum and the kinetoplast-chondriome of Trypanosoma (Schyzotrypanum) cruzi in tissue culture. J Protozool 15:614–621PubMedGoogle Scholar
  92. Miranda K, Benchimol M, Docampo R et al (2000) The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384PubMedGoogle Scholar
  93. Miranda K, Docampo R, Grillo O et al (2004a) Acidocalcisomes of trypanosomatids have species-specific elemental composition. Protist 155:395–405PubMedGoogle Scholar
  94. Miranda K, Docampo R, Grillo O et al (2004b) Dynamics of polymorphism of acidocalcisomes in Leishmania parasite. Histochem Cell Biol 121:407–418PubMedGoogle Scholar
  95. Moniakis J, Coukell MB, Janiec A (1999) Involvement of the Ca2+-ATPase PAT1 and the contractile vacuole in calcium regulation in Dictyostelium discoideum. J Cell Sci 112:405–414PubMedGoogle Scholar
  96. Montalvetti A, Rohloff P, Docampo R (2004) A functional aquaporin colocalizes with the vacuolar proton pyrophosphate to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279:38673–38682PubMedGoogle Scholar
  97. Motta MCM (2008) Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr Pharm Des 14:847–854PubMedGoogle Scholar
  98. Nayak RC, Sahasrabuddhe AA, Bajpai VK et al (2005) A novel homologue of coronin colocalizes with actin in filament-like structures in Leishmania. Mol Biochem Parasitol 143:152–164PubMedGoogle Scholar
  99. Nozaki T, Haynes PA, Cross GAM (1996) Characterization of the Trypanosoma brucei homologue of a Trypanosoma cruzi flagellum-adhesion glycoprotein. Mol Biochem Parasitol 82:245–255PubMedGoogle Scholar
  100. Odiit M, Kansiime F, Enyaru JC (1997) Duration of symptoms and case fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in Tororo, Uganda. East Afr Med J 74:792–795PubMedGoogle Scholar
  101. Odronitz F, Kollmar M (2007) Drawing the three of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196PubMedGoogle Scholar
  102. Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order transmembrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 4:1769–1779Google Scholar
  103. Oliveira LF, Schubach AO, Martins MM et al (2011) Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the new world. Acta Trop 118:87–96PubMedGoogle Scholar
  104. Ono S (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol 258:152–164Google Scholar
  105. Opperdoes FR (1987) Compartmentalization of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41:127–151PubMedGoogle Scholar
  106. Opperdoes FR, Borst P (1977) Localization of nine glycolitic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80:360–364PubMedGoogle Scholar
  107. Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158PubMedGoogle Scholar
  108. Opperdoes FR, Szikora JP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147:193–206PubMedGoogle Scholar
  109. Overath P, Engstler M (2004) Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53:735–744PubMedGoogle Scholar
  110. Paulin JJ (1975) The chondriome of selected trypanosomatids. A three-dimensional study based on serial thick sections and high voltage electron microscopy. J Cell Biol 66:404–413PubMedGoogle Scholar
  111. Peck RF, Shiflett AM, Schwartz KJ et al (2008) The LAMP-like protein p67 plays an essential role in the lysosome of African trypanosomes. Mol Microbiol 68:933–946PubMedGoogle Scholar
  112. Pereira MG, Nakayasu ES, Sant’Anna C et al (2011) Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid conclusions. PLoS One 6:e22359PubMedGoogle Scholar
  113. Portman N, Gull K (2010) The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 40:135–148PubMedGoogle Scholar
  114. Porto-Carreiro I, Attias M, Miranda K et al (2000) Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. Eur J Cell Biol 79:858–869PubMedGoogle Scholar
  115. Priotto G, Kasparian S, Mutombo W et al (2009) Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet 374:56–64PubMedGoogle Scholar
  116. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402PubMedGoogle Scholar
  117. Rassi A Jr, Rassi A, Rezende JM (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin N Am 26:275–291Google Scholar
  118. Riou G, Delain E (1979) Electron microscopy of the circular kinetoplastic DNA from Trypanosoma cruzi: occurrence of concatenated forms. Proc Natl Acad Sci 62:210–217Google Scholar
  119. Rocha GM, Brandão BA, Mortara RA et al (2006) The flagellar attachment zone of Trypanosoma cruzi epimastigotes forms. J Struct Biol 154:89–99PubMedGoogle Scholar
  120. Rocha GM, Teixeira DE, Miranda K et al (2010) Structural changes of the paraflagellar rod during flagellar beating in Trypanosoma cruzi. PLoS One 5:e11407PubMedGoogle Scholar
  121. Rodrigues JCF, Concepcion JL, Rodrigues C et al (2008) In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical and ultrastructural effects. Antimicrob Agents Chemother 52:4098–4114PubMedGoogle Scholar
  122. Rohloff P, Docampo R (2008) A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 118:17–24PubMedGoogle Scholar
  123. Rohloff P, Montalvetti A, Docampo R (2004) Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279:52270–52281PubMedGoogle Scholar
  124. Sahasrabuddhe AA, Bjapai VK, Gupta CM (2004) A novel form of actin in Leishmania: molecular characterization, subcellular localization and association with subpellicular microtubules. Mol Biochem Parasitol 134:105–114PubMedGoogle Scholar
  125. Sant’Anna C, Parussini F, Lourenço D et al (2008a) All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 130:1187–1198PubMedGoogle Scholar
  126. Sant’Anna C, Pereira MG, Lemgruber L et al (2008b) New insights into the morphology of Trypanosoma cruzi reservosome. Microsc Res Tech 71:599–605PubMedGoogle Scholar
  127. Sant’Anna C, Nakayasu ES, Pereira MG et al (2009) Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics 9:1782–1794PubMedGoogle Scholar
  128. Santos CC, Sant’Anna C, Terres A et al (2005) Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J Cell Sci 118:901–915PubMedGoogle Scholar
  129. Santrich C, Morre L, Sherwin T et al (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR2 gene knockouts. Mol Biochem Parasitol 90:95–109PubMedGoogle Scholar
  130. Schagger H (2001) Respiratory chain complexes. IUBMB Life 52:119–128PubMedGoogle Scholar
  131. Schoijet AC, Miranda K, Medeiros LCS et al (2011) Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi. Mol Microbiol 79:50–62PubMedGoogle Scholar
  132. Sen N, Majumder HK (2008) Mitochondrion of protozoan parasite emerges as potent therapeutic target: exciting drugs are on the horizon. Curr Pharm Des 14:839–846PubMedGoogle Scholar
  133. Sesaki H, Wong EF, Siu CH (1997) The cell adhesion molecule DdCAD-1 in Dictyostelium is target to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 138:939–951PubMedGoogle Scholar
  134. Shapiro TA, Englund PT (1995) The structure and replication of the kinetoplast DNA. Ann Rev Microbiol 49:117–143Google Scholar
  135. Sherwin T, Gull K (1989) The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci 323:573–588PubMedGoogle Scholar
  136. Simarro PP, Franco J, Diarra A et al (2012) Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitol 139:842–846Google Scholar
  137. Soares MJ, de Souza W (1988) Cytoplasmic organelles of trypanosomatids: a cytochemical and stereological study. J Submicrosc Cytol Pathol 20:349–361PubMedGoogle Scholar
  138. Soares MJ, de Souza W (1991) Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 77:461–468PubMedGoogle Scholar
  139. Souto-Padrón T, de Souza W (1982) Fine structure and cytochemistry of peroxisomes (microbodies) in Leptomonas samueli. Cell Tiss Res 22:153–158Google Scholar
  140. Souto-Padrón T, de Lima VMQG, Roitman I et al (1980) An electron microscopic and cytochemical study of Leptomonas samueli. Z Parasitenkd 62:127–143Google Scholar
  141. Souto-Padrón T, Campetella OE, Cazzullo JJ et al (1990) Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite–host cell interaction. J Cell Sci 96:485–490PubMedGoogle Scholar
  142. Spitznagel D, O’Rourke JF, Leddy N et al (2010) Identification and characterization of an unusual class I myosin involved in vesicle traffic in Trypanosoma brucei. PLoS One 5:e12282PubMedGoogle Scholar
  143. Steinert G, Firket H, Steinert M (1958) Synthesis of deoxyribonucleic acid in the parabasal body of body of Trypanosoma mega. Exp Cell Res 15:632–635PubMedGoogle Scholar
  144. Stuart K, Panigrahi AK (2002) RNA editing: complexity and complications. Mol Microbiol 45:591–596PubMedGoogle Scholar
  145. Sugrue P, Hirons MR, Adam JU et al (1988) Flagellar wave reversal in the kinetoplastida flagellate Crithidia oncopelti. Biol Cell 63:127–131PubMedGoogle Scholar
  146. Sundar S, Rai M, Chakravarty J et al (2008) New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin Infect Dis 47:1000–1006PubMedGoogle Scholar
  147. Sundar S, Chakravarty J, Agarwal D et al (2010) Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N Engl J Med 362:504–512PubMedGoogle Scholar
  148. Tammana TVS, Sahasrabuddhe AA, Mitra K et al (2008) Actin-depolymerizing factor, ADF/Cofilin, is essentially required in assembly of Leishmania flagellum. Mol Microbiol 70:837–852PubMedGoogle Scholar
  149. Thakur CP, Kanyok TP, Pandey AK et al (2000) Treatment of visceral leishmaniasis with injectable paromomycin (aminosidine). An open-label randomized phase-II clinical study. Trans R Soc Trop Med Hyg 94:432–443PubMedGoogle Scholar
  150. Tielens AG, Van Hellemond JJ (1998) Differences in energy metabolism between trypanosomatidae. Parasitol Today 14:265–272PubMedGoogle Scholar
  151. Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31:472–481PubMedGoogle Scholar
  152. Ulrich PN, Jimenez V, Park M et al (2011) Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 6:e18013PubMedGoogle Scholar
  153. Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115:55–68PubMedGoogle Scholar
  154. Vercesi AE, Moreno SNJ, Docampo R (1994) Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 304:227–233PubMedGoogle Scholar
  155. Vickerman K (1962) The mechanism of cyclical development in trypanosomes of Trypanosoma brucei sub-group: a hypothesis based on ultrastructural observations. Trans R Soc Trop Med Hyg 56:487–495PubMedGoogle Scholar
  156. Vickerman K (1969) On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163–193PubMedGoogle Scholar
  157. Vickerman K, Tetley L (1977) Recent ultrastructural studies on trypanosomes. Ann Soc Belge Med Trop 57:441–457Google Scholar
  158. Vieira M, Rohloff P, Luo S et al (2005) Role for a P-type H + -ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 392:467–474PubMedGoogle Scholar
  159. Waller RF, McConville MJ (2002) Developmental changes in lysosome morphology and function Leishmania parasites. Int J Parasitol 32(12):1432–1445Google Scholar
  160. Webster P (1989) Endocytosis by African trypanosomes. I. Three-dimensional structure of the endocytic organelles in Trypanosoma brucei and T. congolense. Eur J Cell Biol 49:295–302PubMedGoogle Scholar
  161. Weise F, Stierhof YD, Kuhn C et al (2000) Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci 113:4587–4603PubMedGoogle Scholar
  162. World Health Organization (2006) Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol Rec 8:71–80Google Scholar
  163. World Health Organization (2010a) Control of the leishmaniases. World Health Organ Tech Rep Ser 949:186Google Scholar
  164. World Health Organization (2010b) Chagas disease (American trypanosomiasis) fact sheet (revised in June 2010). Wkly Epidemiol Rec 85:334–336Google Scholar
  165. World Health Organization (2010c) Working to overcome the global impact of neglected tropical diseases. Publications of World Health Organization. http://whqlibdoc.who.int/publications
  166. Xu C, Ray DS (1993) Isolation of protein associated with the kinetoplast-DNA networks in vivo. Proc Natl Acad Sci USA 90:1786–1789PubMedGoogle Scholar
  167. Yeoh S, Pope B, Manneherz HG et al (2002) Determining the differences in actin binding by human ADF and cofilin. J Mol Biol 315:911–925PubMedGoogle Scholar
  168. Yun O, Priotto G, Tong J et al (2010) NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 4:e720PubMedGoogle Scholar
  169. Zijlstra EE, Musa AM, Khalil EAG et al (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3:87–98PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Juliany Cola Fernandes Rodrigues
    • 1
    • 2
    • 3
    • 4
  • Joseane Lima Prado Godinho
    • 1
    • 2
  • Wanderley de Souza
    • 1
    • 2
    • 3
  1. 1.Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e BioimagemRio de JaneiroBrazil
  3. 3.Instituto Nacional de Metrologia, Qualidade e TecnologiaRio de JaneiroBrazil
  4. 4.Polo Avançado de XerémUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations