Advertisement

Product Information Retrieval on the Web: An Empirical Study

  • Sabri BouzidiEmail author
  • Damir Vandic
  • Flavius Frasincar
  • Uzay Kaymak
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In this paper, we investigate the consumers’ perception of on-line product search using a questionnaire-based survey. We identify that the information retrieval activity of the purchase process can be performed with three Web applications: a search engine, a price comparison service, and a Web shop. The study underlines the need for linked product data as proposed by the Semantic Web. We argue that linked data will result in easier product search on the Web for the consumer.

References

  1. 1.
    Alba J, Lynch J, Weitz B, Janiszewski C, Lutz R, Sawyer A, Wood S (1997) Interactive home shopping: consumer, retailer, and manufacturer incentives to participate in electronic marketplaces. J Mark 61(3):38–53CrossRefGoogle Scholar
  2. 2.
    Beatty SE, Smith SM (1987) External search effort: an investigation across several product categories. J Consum Res 14(1):83–95CrossRefGoogle Scholar
  3. 3.
    Bizer C, Heath T, Berners-Lee T (2009) Linked data - the story so far. Int J Semantic Web Inf Syst 5(3):1–22CrossRefGoogle Scholar
  4. 4.
    Bloch PH, Sherrell DL, Ridgway NM (1986) Consumer search: an extended framework. J Consum Res 13(1):119–126CrossRefGoogle Scholar
  5. 5.
    Davies J, Studer R, Warren P (eds) (2006) Semantic web technologies: trends and research in ontology-based systems. Wiley, ChichesterGoogle Scholar
  6. 6.
    Davis I (2012) Productdb. http://productdb.org/. Accessed 24 Feb 2012
  7. 7.
    Detlor B, Sproule S, Gupta C (2003) Pre-purchase online information seeking: search versus browse. J Electron Commer Res 4(2):72–84Google Scholar
  8. 8.
    Flavián-Blanco C, Gurrea-Sarasa R, Orús-Sanclemente C (2011) Analyzing the emotional outcomes of the online search behavior with search engines. Comput Hum Behav 27(1):540–551CrossRefGoogle Scholar
  9. 9.
    Google: doubleclick ad planner by google (2011). http://www.google.com/adplanner/static/top1000/. Accessed 12 Feb 2012
  10. 10.
    Häubl G, Dellaert BGC, Donkers B (2010) Tunnel vision: local behavioral influences on consumer decisions in product search. Mark Sci 29(3):438–455CrossRefGoogle Scholar
  11. 11.
    Hepp M (2011) Goodrelations— the most powerful web vocabulary for e-commerce. http://www.heppnetz.de/projects/goodrelations/. Accessed 16 Feb 2012
  12. 12.
    Huang P, Lurie NH, Mitra S (2009) Searching for experience on the web: an empirical examination of consumer behavior for search and experience goods. J Mark 73(2):55–69CrossRefGoogle Scholar
  13. 13.
    Koufaris M, Kambil A, LaBarbera PA (2001) Consumer behavior in web-based commerce: an empirical study. Int. J. Electron. Commerce 6(2):115–138Google Scholar
  14. 14.
    Li B, Ghose A, Ipeirotis PG (2011) Towards a theory model for product search. In: Proceedings of the 20th international conference on world wide web WWW 2011, ACM, New York, pp. 327–336Google Scholar
  15. 15.
    Pavlou PA (2003) Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. Int J Electron Commerce 7(3):101–134Google Scholar
  16. 16.
    Rangaswamy A, Giles CL, Seres S (2009) A strategic perspective on search engines: thought candies for practitioners and researchers. J Interact Mark 23(1):49–60CrossRefGoogle Scholar
  17. 17.
    Vandic D, Dam J V, Frasincar F (2012) Faceted product search powered by the semantic web. Decision Support Systems. http://dx.doi.org/10.1016/j.dss.2012.02.010
  18. 18.
    Wikipedia: comparison shopping agent— wikipedia, the free encyclopedia (2012). http://en.wikipedia.org/wiki/Comparison_shopping_agent. Accessed 24 Feb 2012
  19. 19.
    Wikipedia: price comparison service— wikipedia, the free encyclopedia (2012). http://en.wikipedia.org/wiki/Price_comparison_service. Accessed 12 Feb 2012
  20. 20.
    Yee PL, Hsieh-Yee I, Pierce GR, Grome R, Schantz L (2004) Self-evaluative intrusive thoughts impede successful searching on the internet. Comput Hum Behav 20(1):85–101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sabri Bouzidi
    • 1
    Email author
  • Damir Vandic
    • 1
  • Flavius Frasincar
    • 1
  • Uzay Kaymak
    • 1
  1. 1.Erasmus University RotterdamErasmus School of EconomicsRotterdamThe Netherlands

Personalised recommendations