Effects of Tsunami Wave Erosion on Natural Landscapes: Examples from the 2011 Tohoku-oki Tsunami

  • Goro Komatsu
  • Kazuhisa Goto
  • Victor R. Baker
  • Takashi Oguchi
  • Yuichi S. Hayakawa
  • Hitoshi Saito
  • Jon D. Pelletier
  • Luke McGuire
  • Yasutaka Iijima
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 35)


The 2011 Tohoku-oki Tsunami affected approximately 600 km of the northeastern coast of the Japanese Honshu Island, leaving traces of destruction on man-made buildings and depositing mud- to boulder-sized sediment. Our field observations at Aneyoshi along the Sanriku “ria” coast, where a maximum run-up height of 39.2 m was recorded, add to the limited number of studies of tsunami wave effects on natural landscapes. We found evidence for (1) tsunami wave erosion that exposed bare rock by stripping basal hillslopes of regolith and vegetation, including trees, (2) transport and deposition of coarse gravel, and (3) scour-hole generation around a large boulder and a large sea wall fragment. Computer simulations indicate that the highest first wave reaching the Aneyoshi coast may have been about 20 m high, that the combined duration of the first three waves was tens of minutes to 1 h, and that the maximum wave velocity on land reached over 10 m/s and probably exceeded 20 m/s in the lower, wide reach of the Aneyoshi valley. We hypothesize that hillsides along the Sanriku Coast have been stripped by erosion of numerous ancient tsunami events recurring at century or even decadal scales, since at least the mid-Holocene. The cumulative effects of tsunami erosion on the hillslopes and their long-term evolution are important potential topics for future studies.


2011 Tohoku Tsunami Aneyoshi Erosion Hillslopes Ria coast Sanriku Scour holes Sediment 



We thank an anonymous reviewer for the useful comments that improved the manuscript. This research was supported by the National Science Foundation-funded Rapid Response Research (RAPID) project (EAR-1138061), and by a research grant from the Tohoku University for an emergency field survey following the 2011 Tohoku-oki Tsunami.


  1. Baker VR, Costa JE (1987) Catastrophic flooding. Allen and Unwin, Boston, pp 1–21Google Scholar
  2. Baker VR, Benito G, Rudoy AN (1993) Paleohydrology of late Pleistocene superflooding Altai Mountains, Siberia. Science 259:348–350CrossRefGoogle Scholar
  3. Bryant EA, Young RW (1996) Bedrock-sculpturing by tsunami South Coast, New South Wales, Australia. J Geol 104:565–582CrossRefGoogle Scholar
  4. Chida N, Matsumoto H, Obara S (1984) Recent alluvial deposit and Holocene sea-level change on Rikuzentakata coastal plain, northeast Japan. Ann Tohoku Geogr Assoc 36(4):232–239 (in Japanese)Google Scholar
  5. Dawson AG (1994) Geomorphological effects of tsunami run-up and backwash. Geomorphology 10:83–94CrossRefGoogle Scholar
  6. FLO-2D Software Inc (2009) FLO-2D reference manual, version 2009. FLO-2D Software Inc, NutriosoGoogle Scholar
  7. Friend JA (1992) Achieving soil sustainability. J Soil Water Conserv 47:156–157Google Scholar
  8. Fritz H, Mohammed F, Yoo J (2009) Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl Geophys 166:153–175CrossRefGoogle Scholar
  9. Fritz HM, Phillips DA, Okayasu A, Shimozono T, Liu H, Mohammed F, Skanavis V, Synolakis CE, Takahashi T (2012) The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys Res Lett 39:L00G23. doi:10.1029/2011GL050686 CrossRefGoogle Scholar
  10. Goff JR, Lane E, Arnold J (2009) The tsunami geomorphology of coastal dunes. Nat Hazards Earth Syst Sci 9:847–854CrossRefGoogle Scholar
  11. Goto C, Ogawa Y, Shuto N, Imamura F (1997) IUGG/IOC time project, numerical method of tsunami simulation with the leap-frog scheme: IOC manuals and guides. UNESCO, Paris, 130 pGoogle Scholar
  12. Goto K, Chague-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Suguwara D, Szczucinski W, Tappin DR, Witter R, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-Oki event. Mar Geol 290:46–50CrossRefGoogle Scholar
  13. Goto K, Sugawara D, Abe T, Haraguchi T, Fujino S (2012) Liquefaction as an important local source of the 2011 Tohoku-Oki tsunami deposits at Sendai Plain, Japan. Geology 40:887–890CrossRefGoogle Scholar
  14. Imamura F, Koshimura S, Oie T, Mabuchi Y, Murashima Y (2011) Tsunami simulation for the 2011 off the Pacific coast of Tohoku Earthquake (Tohoku University model version 1.0). 12 ppGoogle Scholar
  15. Kench PS, Nichol SL, Smithers SG, McLean RF, Brander RW (2008) Tsunami as agents of geomorphic change in mid-ocean reef islands. Geomorphology 95:361–383CrossRefGoogle Scholar
  16. Komatsu G, Arzhannikov SG, Gillespie AR, Burke RM, Miyamoto H, Baker VR (2009) Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River. Geomorphology 104:143–164. doi:10.1016/j.geomorph.2008.08.009 CrossRefGoogle Scholar
  17. MacInnes BT, Bourgeois J, Pinegina TK, Kravchunovskaya EA (2009) Tsunami geomorphology: erosion and deposition from the 15 November 2006 Kuril Island tsunami. Geology 37:995–998CrossRefGoogle Scholar
  18. Mori N, Takahashi T, The 2011 Tohoku earthquake tsunami joint survey group (2012) Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami. Coast Eng J 54:27. doi:10.1142/S0578563412500015 CrossRefGoogle Scholar
  19. Nanayama F, Shigeno K (2006) Inflow and outflow facies from the 1993 tsunami in southwest Hokkaido. Sediment Geol 187:139–158CrossRefGoogle Scholar
  20. Nanayama F, Shigeno K, Satake K, Shimokawa K, Koitabashi S, Miyasaka S, Ishii M (2000) Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment Geol 135:255–264CrossRefGoogle Scholar
  21. Nott J, Bryant EA (2003) Extreme marine inundation (tsunamis?) of coastal Western Australia. J Geol 111:691–706CrossRefGoogle Scholar
  22. Ohishi M (2011) Time-lapse photography of tsunami at Kawashiro, Omoe Peninsula, Miyako City and the maximum run-up height at Aneyoshi: The geological Society of Japan web site http://www.geosociety.jp/hazard/content0054.html
  23. Paris R, Wassmer P, Sartohadi J, Lavigne F, Barthomeuf B, Desgages É, Grancher D, Baumert P, Vautier F, Brunstein D, Gomez C (2009) Tsunamis as geomorphic crisis: lessons from the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Geomorphology 104:59–72CrossRefGoogle Scholar
  24. PARI (Port and Airport Research Institute) (2011) Results of the GPS-mounted wave buoys at Kuji, Miyako, and Onahama. http://www.pari.go.jp/files/3609/130613169.pdf
  25. Shuto N, Satake K, Matsutomi H, Imamura F, Koshimura S (eds) (2007) Encyclopedia of Tsunami. Asakura publishing Co, 368 p (in Japanese)Google Scholar
  26. Simkin T, Fiske RS (1984) Krakatau, 1883: the volcanic eruption and its effects. Smithsonian Institution Press, Washington, D.C., 400 pGoogle Scholar
  27. Wünnemann K, Weiss R, Hofmann K (2007) Characteristic of oceanic impact induced large water waves – reevaluation of the tsunami hazard. Meteorit Planet Sci 42:1893–1903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Goro Komatsu
    • 1
  • Kazuhisa Goto
    • 2
  • Victor R. Baker
    • 3
  • Takashi Oguchi
    • 4
  • Yuichi S. Hayakawa
    • 4
  • Hitoshi Saito
    • 4
  • Jon D. Pelletier
    • 5
  • Luke McGuire
    • 6
  • Yasutaka Iijima
    • 7
  1. 1.International Research School of Planetary SciencesUniversità d’AnnunzioPescaraItaly
  2. 2.Planetary Exploration Research CenterChiba Institute of TechnologyNarashinoJapan
  3. 3.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA
  4. 4.Center for Spatial Information ScienceUniversity of TokyoKashiwaJapan
  5. 5.Department of GeosciencesUniversity of ArizonaTucsonUSA
  6. 6.Program in Applied MathematicsUniversity of ArizonaTucsonUSA
  7. 7.Department of Earth ScienceTohoku UniversitySendaiJapan

Personalised recommendations