Novel HTS DC Squid Solutions for NMR Applications

  • Maxim L. Chukharkin
  • Alexey S. Kalabukhov
  • Justin F. Schneiderman
  • Fredrik Öisjöen
  • Magnus Jönsson
  • Minshu Xie
  • Oleg V. Snigirev
  • Dag Winkler
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

We have developed a multilayer flux-transformer-based high-TC SQUID (flip-chip) magnetometer that improves signal-to-noise-ratios (SNR) in ultra-low field magnetic resonance (ulf-MR) recordings of protons in water. Direct ulf-MR-based benchmarking of the flip-chip versus a standard planar high-TC SQUID magnetometer resulted in improvement of the SNR by a factor of 2. This gain is attributable to the improved transformation coefficient (1.9 vs 5.3 nT/Φ0) that increased the signal available to the flip-chip sensor and to the lower noise at the measurement frequency (15 vs 25 fT/Hz1/2 at 4 kHz). The improved SNR can lead to better spectroscopic resolution, lower imaging times, and higher resolution in ulf-MR imaging systems based on high-TC SQUID technology. The experimental details of the sensors, calibration, and ulf-MR benchmarking are presented in this report.

References

  1. 1.
    Busch S, Hatridge M, Mössle M, Myers W, Wong T, Muck M et al (2012) Measurements of T 1-relaxation in ex vivo prostate tissue at 132 μT. Magn Reson Med 67:1138–1145CrossRefGoogle Scholar
  2. 2.
    Clarke J, Hatridge M, Mössle M (2007) SQUID-detected magnetic resonance imaging in microtesla fields. Annu Rev Biomed Eng 9:389–413CrossRefGoogle Scholar
  3. 3.
    Chen H-H, Yang H-C, Horng H-E, Liao S-H, Yueh S, Wang L-M (2011) A compact SQUID-detected magnetic resonance imaging system under microtesla fields in a magnetically unshielded environment. J Appl Phys 110:093903ADSCrossRefGoogle Scholar
  4. 4.
    Öisjöen F, Schneiderman JF, Figueras GA, Chukharkin ML, Kalabukhov A, Hedström A et al (2012) High-Tc superconducting quantum interference device recordings of spontaneous brain activity: towards high-Tc magnetoencephalography. Appl Phys Lett 100:132601ADSCrossRefGoogle Scholar
  5. 5.
    Öisjöen F (2011) High-TC SQUIDs for biomedical applications: immunoassays, MEG, and ULF-MRI. PhD dissertation, Chalmers University of Technology, Göteborg, unpublishedGoogle Scholar
  6. 6.
    Jönsson M (2011) Ultra-low field nuclear magnetic resonance using high-TC SQUIDs. Master’s thesis, Chalmers University of Technology, Göteborg, unpublishedGoogle Scholar
  7. 7.
    Ludwig F, Dantsker E, Koelle D, Kleiner R, Miklich AH, Clarke J (1995) Multilayer magnetometers based on high-T C SQUIDs. Appl Supercond 3:383–398CrossRefGoogle Scholar
  8. 8.
    Chukharkin ML, Kalabukhov A, Öisjöen F, Schneiderman JF, Snigirev O, Winkler D (2012) Noise properties of high-T C superconducting flux transformers fabricated using chemical-mechanical polishing. Appl Phys Lett 101:042602ADSCrossRefGoogle Scholar
  9. 9.
    Drung D (2003) High-TC and low-TC dc SQUID electronics. Supercond Sci Technol 6:1320–1336ADSCrossRefGoogle Scholar
  10. 10.
    Enpuku K, Hirakawa S, Momotomi R, Matsuo M, Yoshida T (2011) Performance of HTS SQUID using resonant coupling of cooled Cu pickup coil. Physica C 471:1234–1237ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maxim L. Chukharkin
    • 1
    • 2
  • Alexey S. Kalabukhov
    • 1
    • 3
  • Justin F. Schneiderman
    • 4
  • Fredrik Öisjöen
    • 1
  • Magnus Jönsson
    • 1
  • Minshu Xie
    • 1
  • Oleg V. Snigirev
    • 2
  • Dag Winkler
    • 1
  1. 1.Department of Microtechnology and Nanoscience—MC2Chalmers University of TechnologyGöteborgSweden
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussian Federation
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussian Federation
  4. 4.MedTech West and the Institute of Neuroscience and PhysiologySahlgrenska Academy and the University of GothenburgGöteborgSweden

Personalised recommendations