Sustainable Phosphorus Management: A Transdisciplinary Challenge

  • Roland W. ScholzEmail author
  • Amit H. Roy
  • Deborah T. Hellums


This chapter begins with a brief review of the history of phosphorus, followed by a description of the role of phosphorus in food security and technology development. It is then followed by discussions on critical issues related to sustainable phosphorus management, such as phosphorus-related pollution, the innovation potential of phosphate fertilizers and fertilizer production, uneven geographical distribution of phosphate resources, transparency of reserves, economic scarcity, and price volatility of phosphate products. In order to identify the deficiencies in the world’s phosphorus flows, we utilize the “not too little–not too much” principle (including the Ecological Paracelsus Principle), which is essential to understanding the issues of pollution, supply security, losses, sinks and efficiency of phosphorus use, and the challenges to closing the phosphorus cycle by recycling and other means. When linking the supply–demand (SD) chain view on phosphorus with a Substance or Material Flux Analysis, the key actors in the global phosphorus cycle become evident. It is apparent that sustainable phosphorus management is a very complex issue that requires a global transdisciplinary process to arrive at a consensus solution. This holds true both from an epistemological (i.e., knowledge) perspective as well as from a sustainable management perspective. To gain a complete picture of the current phosphorus cycle, one requires knowledge from a broad spectrum of sciences, ranging from geology, mining, and chemical engineering; soil and plant sciences; and all facets of agricultural and environmental sciences to economics, policy, and behavioral and decision science. As phosphorus flows are bound to specific historical, sociocultural, and geographical issues as well as financial and political interests, the understanding of the complex contextual constraints requires knowledge of related sciences. The need for transdisciplinary processes is equally evident from a sustainable transitioning perspective. In order to identify options, drivers, and barriers to improving phosphorus flows, one requires processes in; capacity building that may be changed and consensus building on the phosphorus use practices that must be changed and maintained, along with recognition of how changes in phosphorus use in the current market may be framed. The latter is illustrated by means of the Global TraPs (Global Transdisciplinary Processes for Sustainable Phosphorus Management) project, a multi-stakeholder initiative including key stakeholders on both sides of the phosphorus SD chain which includes mutual learning between science and society.


Sustainable phosphorus management Supply–demand chain analysis Food security Environmental impacts 



We wish to thank Fridolin Brand, Patrick Heffer, Christian Kabbe, Kazuyu Matsubae, Daniel B. Müller, Michael Mew, Gregoire Meylan, Michel Prud’homme, Terry Roberts, Desirée Ruppen, Sheida Sattari, Willem Schipper, Andy Spoerri, Christopher Thornton, and Andrea E. Ulrich for their valuable input to various sections or the whole text of a previous version and Clyde Beaver and Donna Venable for the editing of this chapter.

Supplementary material

Fig. a

A blueprint of global phosphorus flows along the steps of the supply–demand chain (non-incorporating virtual flows) referring to the phosphate rock production in 2011 including an equivalent of 25 Mt P year−1 according to USGS (2012) (there is high uncertainty with some data, see text)


  1. Adger WN (2006) Vulnerability. Global Environ Change 16(3):268–281Google Scholar
  2. Äikäs O (1989) Phosphate resources in early Proterozoic supracrustal rocks, Finland with reference to the Baltic Shield. In: Northholt AJG, Sheldon RP, Davidson DF (eds) Phosphate deposits of the world, vol 2., Phosphate rock and resources. Cambridge University Press, Cambridge, pp 429–437Google Scholar
  3. Al-Bassam K, Fernette G, Jasinski SM (2012) Phosphate deposits of Iraq. Paper presented at the PHOSPHATES 2012, El-Jadidam, Morocco, 20–23 March 2012Google Scholar
  4. Alcamo JD, Van Vuuren D, Cramer W (2006) Changes in ecosystem services and their drivers across scenarios. In: Carpenter SR et al (eds) Ecosystem and human well-being: scenarios. Island Press, Washington, pp 279–354Google Scholar
  5. Alexandratos N, Bruinsma L (2012) World agriculture towards 2030/2050. The Revision. FAO, RomeGoogle Scholar
  6. Alford WAL, Parkes JW (1953) Murray, James—a pioneer in the making of superphosphate. Chem. Ind 33:852–855Google Scholar
  7. Allen HL (1987) Forest fertilizers. J Forest 85(2):37–46Google Scholar
  8. Andrews JB (1910) Industrial diseases and occupational standards Proc Nat Conference of Charities and Corrections 27th session Google Scholar
  9. Aven T (2011) On some recent definitions and analysis frameworks for risk, vulnerability, and resilience. Risk Anal 31(4):515–522. doi: 10.1111/j.1539-6924.2010.01528.x Google Scholar
  10. Babenko AA (2012) Removal of phosphorus in the final stages of oxidative refining of phosphorus hot metals. Steel Translation 41(12):985–987. doi: 10.3103/s0967091211120035 Google Scholar
  11. Battista OA (1947) Got a match? The Irish Monthly 75:446–449Google Scholar
  12. Baur R (2010) Operating North America’s first full scale nutrient recovery facility. In: Federation WE (ed) Proceedings of the water environment federation, residuals and biosolids, pp 492–506Google Scholar
  13. Bellwood P (2005) First farmers. The origins of agricultural societies. Blackwell, MaldenGoogle Scholar
  14. Benevolo L (1980) The history of the city. The MIT Press, CambridgeGoogle Scholar
  15. Benni T (2013) Phosphate deposits of Iraq. Paper presented at the UNFC Workshop, Santiago de ChileGoogle Scholar
  16. Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N, and P. Global Biogeochem Cycles 19(4). doi:Gb4s0510.1029/2005gb002453Google Scholar
  17. Binder CR, Hofer C, Wiek A, Scholz RW (2004) Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland. Ecol Econ 49(1):1–17. doi: 10.1016/j.ecolecon.2003.10.021 Google Scholar
  18. Body JJ (2006) Breast cancer: Bisphosphonate therapy for metastatic bone disease. Clin Cancer Res 12(20):6258S–6263S. doi 10.1158/1078-0432.ccr-06-0840 Google Scholar
  19. Bohle H-G (2001) Vulnerability and criticality: perspectives from social geography. IHDP Update 2 (1):
  20. Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Global Biogeochem Cycles 23. doi:Gb0a0410.1029/2009gb003576Google Scholar
  21. Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AH, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2012) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academies of Sciences USAGoogle Scholar
  22. Bowers JA (1995) Criticality in resource constrained networks. J Oper Res Soc 46(1):80–91. doi: 10.1057/jors.1995.9 Google Scholar
  23. Brand CJ (1937) The fertilizer industry. Ann Am Acad Polit Soc Sci 193:22–33Google Scholar
  24. Brandt AR (2010) Review of mathematical models of future oil supply: historical overview and synthesizing critique. Energy 35(9):3958–3974. doi: 10.1016/ Google Scholar
  25. Brundtland GH (1987) Our common future. World Commission on Environment and Development, OxfordGoogle Scholar
  26. Brunner PH, Rechberger H (2003) Practical handbook of material analysis. Lewis, Boca RatonGoogle Scholar
  27. BTA International (2013) Verfahrensschema einstufiges Vergährungsverfahren.
  28. Carpenter SR, Bennett EM (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6(1). doi:01400910.1088/1748-9326/6/1/014009Google Scholar
  29. Chapin FS, Kofinas GP, Folke C (2009) Principles of ecosystem stewardship: resilience-based natural resource management in a changing world. Springer, New YorkGoogle Scholar
  30. Chemicals Unit of DG Enterprise (2004) Draft proposal relating to cadmium in fertilizers. European Commission, BrusselsGoogle Scholar
  31. Chen H, Yan SH, Ye ZL, Meng HJ, Zhu YG (2012) Utilization of urban sewage sludge: Chinese perspectives. Environ Sci Pollut Res 19(5):1454–1463. doi: 10.1007/s11356-012-0760-0 Google Scholar
  32. Childs PE (2000) Phosphorus: from urine to fire. 3. Food from old bones: the fertilizer connection. Chemistry in Action (60)Google Scholar
  33. CNCIC (2008) China fertilizer export taxes, China Fertilizer Market Week, No. 8 Volume 34. China National Chemical Information Center. Accessed 21 Aug 2012
  34. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change-Human Policy Dimensions 19(2):292–305. doi: 10.1016/j.gloenvcha.2008.10.009 Google Scholar
  35. Cordell D, Rosemarin A, Schroder JJ, Smit AL (2011a) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84(6):747–758. doi: 10.1016/j.chemosphere.2011.02.032 Google Scholar
  36. Cordell D, White S, Lindström T (2011) Peak phosphorus: the crunch time for humanity? The Sustainability Review, 4 April 2011Google Scholar
  37. Crutzen PJ (2002) The “anthropocene”. Journal de Physique IV France 12(10):11–15. doi: 10.1051/jp4:20020447 Google Scholar
  38. Cuesta J (2013) A world free of poverty… but of hunger and malnutrition? Eur J Dev Res 25(1):1–4. doi: 10.1057/ejdr.2012.43 Google Scholar
  39. Cunfer G (2004) The dust bowl. EH.Net Encyclopaedia, edited by Robert Whaples. August 19, 2004. Accessed 10 May 2010
  40. Daly M (1984) The deposed capital. Cork University Press, CorkGoogle Scholar
  41. Datta NC (2005) The story of phosphorus. Universities Press, Andhra PradeshGoogle Scholar
  42. Davidson EA (2012) Representative concentration pathways and mitigation scenarios for nitrous oxide. Environ Res Lett 7(2):024005. doi:02400510.1088/1748-9326/7/2/024005Google Scholar
  43. Davis RD (1996) The impact of EU and UK environmental pressures on the future of sludge treatment and disposal. CIWEM Water Environ J 10:65–69Google Scholar
  44. de la Vega G (1609/1990) Comentarios reales historia general del Perú Santander de Quilichao/MadridGoogle Scholar
  45. de Vries B (ed) (1998) Umm el-Jimal. A frontier town and its landscape in northern Jordan: Fieldwork 1972–1981. Journal of Roman Archaeology. Supplementary series no. 26. Journal of Roman Archaeology. Supplementary series no. 26, Portsmouth, RIGoogle Scholar
  46. Déry P, Anderson B (2007) Peak phosphorus. Energy Bulletin (Retrieved September 22, 2011)Google Scholar
  47. Deutsche-Rohstoffagentur/BGR (2011)Google Scholar
  48. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929. doi: 10.1126/science.1156401 Google Scholar
  49. Dumas M, Frossard E, Scholz RW (2011) Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84:798–805Google Scholar
  50. Dumas MJ, Boussingault JB (1844) The chemical and physiological balance of organic nature: an essay. Saxton, Peirce & Co, BostonGoogle Scholar
  51. Editorial (2010) How to feed a hungry world. Nature 466(7306):531–532Google Scholar
  52. Edström M, Schüßler I, Luostarinen S (2011) Combustion of manure: manure as fuel in a heating plant. Baltic MANURE WP6 Energy potentialsGoogle Scholar
  53. EFSA Panel on Dietic Products Nutrition and Allergies (2005) Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the Tolerable Upper Intake Level of Phosphorus (Request N° EFSA-Q-2003-018). The EFSA Journal 233:1–19Google Scholar
  54. Eilittä M (2011) The Global TraPs Project. Transdisciplinary Processes for Sustainable Phosphorus Management (2010–2015). Multi-stakeholder forum to guide and optimize P use. ETH-NSSI and IFDC, Zürich and Muscle ShoalsGoogle Scholar
  55. Elser J (2014) Health dimensions of phosphorus. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 229–231Google Scholar
  56. Emsley J (2000a) The 13th element: the sordid tale of murder, fire, and phosphorus. Wiley, New YorkGoogle Scholar
  57. Emsley J (2000b) The shocking history of phosphorus. The biography of the devil’s element. MacMillan, LondonGoogle Scholar
  58. EPA (2012) Estimated animal agriculture nitrogen and phosphorus from manure. Accessed December 20, 2012
  59. Erdmann L, Graedel TE (2011) Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 45(18):7620–7630Google Scholar
  60. Escueta SC, Tapay NE (2010) Soil and nutrient loss on swidden farms, and farmers’ perception in Bazal-Baubo watershed, Aurora Province, Philippines. Asia Life Sci 19(2):395–418Google Scholar
  61. EU (2002) Phosphates and alternative detergent builders—final report. vol WRc Ref: UC 4011. BrusselsGoogle Scholar
  62. EU (2012a) EP supports ban of phosphates in consumer detergents. Press release. IP/11/1542, 14/12/2011. BrusselsGoogle Scholar
  63. EU (2012b) Regulation (EU) No 259/2012 of the European Parliament and of the Council of 14 March 2012 amending Regulation (EC) No 648/2004 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents Text with EEA relevance. BrusselsGoogle Scholar
  64. Evans M (2012) Phosphate resources: future for 2012 and beyond. Paper presented at the AFA International Fertilizer Forum and Exhibition, Sharm El-SheikhGoogle Scholar
  65. Evenson RE, Gollin D (2003) Assessing the impact of the Green Revolution, 1960 to 2000. Science 300(5620):758–762. doi: 10.1126/science.1078710 Google Scholar
  66. Fan S, Menon P, Brzeska J (2013) What policy changes will reverse persistent malnutrition in Asia? Eur J Dev Res 25(1):28–35. doi: 10.1057/ejdr.2012.47 Google Scholar
  67. FAO (2008) The state of food and agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  68. FAO (2009) 1.02 billion people hungry. FAO. Accessed 15 Aug 2013Google Scholar
  69. FAO (2010a) Fishery and aquaculture statistics, commodities. FAO.
  70. FAO (2010b) The state of food security in the world: addressing food insecurity in protracted crises. RomeGoogle Scholar
  71. FAO (2011) Save and grow. A policy maker’s guide to the sustainable intensification of smallholder crop production. FAO, RomeGoogle Scholar
  72. FAO (2012a) Meat and meat products. FAO Agriculture and Consumer Protection Department.
  73. FAO (2012b) Statistical Yearbook 2012. FAO, RomeGoogle Scholar
  74. FAO LEAD (2006) Livestock’s long shadow. Environmental issues and options. FAO The Livestock, Environment and development Initiative, RomeGoogle Scholar
  75. Färber E (1921) Die geschichtliche Entwicklung der Chemie (Fragments translated by Smithsonian institution United States National Museum)Google Scholar
  76. Finnish Environment Institute (2000) Cadmium in fertilizer, risks to human health and the environment. Finnish Ministry of Agriculture and Forestry, HelsinkiGoogle Scholar
  77. FIPR (2013) Phosphate primer: phosphogypsum and the EPA Ban. Florida Industrial and Phosphate Research Institute. Accessed 12 Aug 2013
  78. Föllmi KB (1996) The phosphorpus cycle, photogenesis and marine phosphate-rich deposits. Earth-Sci Rev 40:55–124Google Scholar
  79. Foster JB (1999) Marx’s theory of metabolic rift: classical foundations for environmental sociology. Am J Sociol 105(2):366–405Google Scholar
  80. Frear C (2012) Farm based anaerobic digestion and nutrient recovery. In: Bio cycle conference, Portland, 17–18 April 2012Google Scholar
  81. Fresenius W, Kettrup A, Scholz RW (1995) Grössenordnung Faktor 2: Zur Genauigkeit von Messungen bei Altlasten. Altlasten Spektrum 4:217–218Google Scholar
  82. Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29(1):15–23Google Scholar
  83. Gantner O, Schipper W, Weigand JJ (2014) Technological use of phosphorus: the non-fertilizer, non-feed and non-detergent domain. In: Scholz RW, Roy AH, Brand FS, Hellums DH, Ulrich AE (eds) Sustainable phosphorus management—A sustainable roadmap. Springer, BerlinGoogle Scholar
  84. Ghosh J (2010) The unnatural coupling: food and global finance. J Agrar Chang 10(1):72–86Google Scholar
  85. Global Phosphate Forum (2012) Phosphates in detergents. Accessed 11 Nov 2012
  86. Godeman J (2008) Knowledge integration: a key challenge for transdisciplinary cooperation. Sustain High Educ Res 14(6):625–641Google Scholar
  87. Gong P, Liang L, Zhang Q (2011) China must reduce fertilizer use too. Nature 473(7347):284–285Google Scholar
  88. González-Andradea F, Sánchez-Qa D, Martĺnez-Jarretab B, Borja J (2002) Acute exposure to white phosphorus: a topical problem in Ecuador (South America). Leg Med 4(3):187–192Google Scholar
  89. Gossel TA, Bricker JD (1994) Principles of clinical toxicology, 3rd edn. Raven Press, New YorkGoogle Scholar
  90. GPF (2013) Phosphates in detergents. Retrieved 10 Aug 2013. Global Phosphate Forum.
  91. Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warren S, Yang MY, Zhu C (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070. doi: 10.1021/es203534z Google Scholar
  92. Graham WF, Duce RA (1979) Atmospheric pathways of the phosphorus cycle. Geochim Cosmochim Acta 43(8):1195–1208. doi: 10.1016/0016-7037(79)90112-1 Google Scholar
  93. Habermas J (1996) Contributions to a discourse theory of law and democracy. Translated by William Regh. MIT Press, CambridgeGoogle Scholar
  94. Halden RU (2010) Plastics and health risks. In: Fielding JE, Brownson RC, Green LW (eds) Annual review of public health, vol 31. Annual Review of Public Health. Annual Reviews, Palo Alto, pp 179–194. doi: 10.1146/annurev.publhealth.012809.103714
  95. Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94(3):323–332. doi: 10.1093/aob/mch156 Google Scholar
  96. Hart MR, Quin BF, Nguyen ML (2004) Phosphorus runoff from agricultural land and direct fertilizer effects: a review. J Environ Qual 33(6):1954–1972Google Scholar
  97. Haygarth PM, Jarvis SC (1999) Transfer of phosphorus from agricultural soils. In: Sparks DL (ed) Advances in Agronomy, vol 66. pp 195–249. doi: 10.1016/s0065-2113(08)60428-9
  98. Heffer P (2013) Personal communication, phosphate fertilizer for biofuel, 24 July 2013. ParisGoogle Scholar
  99. Heffer P, Prud’homme M (2011) Fertilizer Outlook 2011–2015. Paper presented at the 79th IFA Annual Conference, 23–25 May 2011, Montreal (Canada)Google Scholar
  100. Hein JR (ed) (2004) Handbook of exploration and environmental geochemistry. Life Cycle of the Phosphoria Formation—From Deposition to the Post-Mining Environment, vol 8. Elsevier, AmsterdamGoogle Scholar
  101. Hellstein JW, Marek CL (2004) Bis-phossy jaw, phossy jaw, and the 21st century: Bisphosphonate-associated complications of the jaws. J Oral Maxillofac Surg 62(12):1563–1565. doi: 10.1016/j.joms.2004.09.004 Google Scholar
  102. Herrmann L (2012) Personal communication, 4 Sept 2012Google Scholar
  103. Herrmann L, Schipper W, Langeveld K, Reller A (2014) Processing: what improvements for what product? In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, BerlinGoogle Scholar
  104. Hesketh N, Brookes PC (2000) Development of an indicator for risk of phosphorus leaching. J Environ Qual 29(1):105–110Google Scholar
  105. Hilton J, Dawson CJ (2012) Enhancing management of and value from phosphate resources. Waste Resour Manage 165(4):179–189Google Scholar
  106. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23Google Scholar
  107. Hu Z (2011) 300 million small holders off to cities/townships. What are potential impacts for the P-demand? In: 1st global TraP workshop, Tempe, AZ, 2 Feb 2012Google Scholar
  108. Hubbert MK (1956) Nuclear energy and the fossil fuels. Paper presented at the Meeting of the Southern District, Division of ProductionAmerican Petroleum Institute., San Antonio, TXGoogle Scholar
  109. IFAD (2011) Rural poverty report. New realities, new challenges: new opportunities for tomorrow’s generation. RomeGoogle Scholar
  110. IPNI (2013) Nutrient source specifics. Single superphosphates. International Plant Nutrition Institute. Accessed 10 Aug 2013
  111. Jackson BJ (1892) Eben Norton Hosford. Proceedings of the American academy of arts and sciences. pp 340–346Google Scholar
  112. Jansa J, Frossard E, Stamp P, Kreuzer M, Scholz RW (2010) Future food production as interplay of natural resources, technology, and human society a problem yet to solve. J Ind Ecol 14(6):874–877. doi: 10.1111/j.1530-9290.2010.00302.x Google Scholar
  113. Jasinski SM (2009) Phosphate rock. In: US Geological Survey (ed) Mineral commodity summaries. USGS, pp 120–121Google Scholar
  114. Jasinski SM (2010) Phosphate rock. In: US Geological Survey (ed) Mineral commodity summaries. USGS, St. Louis, pp 118–119Google Scholar
  115. Jasinski SM (2011a) Phosphate rock. In: US Geological Survey (ed) Mineral commodity summaries. USGS, Reston, pp 118–119Google Scholar
  116. Jasinski SM (2011b) Phosphate rock [advanced release]. In: USGS (ed) Minerals Yearbook. USGS, WashingtonGoogle Scholar
  117. Jasinski SM (2012) Phosphate rock. In: US Geological Survey (ed) Mineral commodity summaries. USGS, Mineral commodity summaries, pp 118–119Google Scholar
  118. Jasinski SM (2013) Personal communication by e-mail. 5 Feb 2013Google Scholar
  119. Jasinski SM, Lee WH, Causey JD (2004) Handbook of exploration and environmental geochemistry. In: Hein JR (ed) Life cycle of the Phosphoria formation—from deposition to the post-mining environment, vol 8. Elsevier, Amsterdam, pp 45–71Google Scholar
  120. Jeong Y-S, Matsubae-Yokoyama K, Nagasaka T (2009) Recovery of manganese and phosphorus from Dephosphorization slag with wet magnetic separation. Tohoku University, Graduate School of Environmental StudiesGoogle Scholar
  121. Johnson J, Harper EM, Lifset R, Graedel TE (2007) Dining at the periodic table: metals concentrations as they relate to recycling. Environ Sci Technol 41(5):1759–1765. doi:10.1021/es060736h|ISSN.0013-936XGoogle Scholar
  122. Johnston AE, Richards IR (2003) Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use Manage 19(1):45–49. doi: 10.1079/sum2002162 Google Scholar
  123. Kabbe C (2013) Sustainable sewage sludge management fostering phosphorus recovery. Bluefacts 4:36–41Google Scholar
  124. Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux, New YorkGoogle Scholar
  125. Kanton Zürich (2007) Regierungsratsbeschluss (RRB) 572/2007. ZürichGoogle Scholar
  126. Kauffman JB, Cummings DL, Ward DE, Babbitt R (1995) Fire in the Brazilian Amazon. 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104(4):397–408. doi: 10.1007/bf00341336 Google Scholar
  127. Kaufmann D, Kraay A, Mastruzzi M (2009) Governance matters VIII. Aggregate and individual governance indicators, 1996–2008. Policy research working paperGoogle Scholar
  128. Kaufmann D, Kraay A, Mastruzzi M (2011) The Worldwide Governance Indicators (WGI) project. The World Bank Group. Accessed 1 Feb 2012
  129. Kelly R (2012) The hunger grains. The fight is on. Time to scrap EU biofuel mandates. Oxfam Briefing Paper 161:1–32Google Scholar
  130. Kenkel P (2012) Managing Fertilizer Price Risk. vol AGEC-262. Oklahoma State University, OklahomaGoogle Scholar
  131. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375. doi: 10.1016/j.biombioe.2003.08.002 Google Scholar
  132. Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29(6):426–439. doi: 10.1016/j.biombioe.2005.06.004 Google Scholar
  133. King FH (1911/2004) Farmers of forty centuries: organic farming in China, Korea and Japan. Dover Publications, MineolaGoogle Scholar
  134. Kippenberger C (2001) Materials flow and energy required for the production of selected mineral commodities, vol SH 13. Wirtschaftsgeologie, Berichte zur Rohstoffwirtschaft. Bundesanstalt für Geowissenschaften und Rohstoffe und Staatliche Geologische Dienste in der Bundesrepublik Deutschland, HannoverGoogle Scholar
  135. Knud-Hansen C (1994) Historical perspective of the phosphate detergent conflict. Paper presented at the Natural Resources and Environmental Policy Seminar, BoulderGoogle Scholar
  136. Köhler J (2006) Detergent phosphates: an EU policy assessment. J Bus Chem 3(2)Google Scholar
  137. Krafft F (1969) From elemental light to chemical element. Angew Chem Int Ed 8:660–671Google Scholar
  138. Kraljic P (1983) Purchasing must become supply management. Harvard Business ReviewGoogle Scholar
  139. Kroger R, Perez M, Walker S, Sharpley A (2012) Review of best management practice reduction efficiencies in the Lower Mississippi Alluvial Valley. J Soil Water Conserv 67(6):556–563. doi: 10.2489/jswc.67.6.556 Google Scholar
  140. Krohns S, Lunkenheimer P, Meissner S, Reller A, Gleich B, Rathgeber A, Gaugler T, Buhl HU, Sinclair DC, Loidl A (2011) The route to resource-efficient novel materials. Nat Mater 5(9):800–901Google Scholar
  141. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31(4):575–584. doi: 10.1016/j.envint.2004.09.005 Google Scholar
  142. Lamprecht H, Lang DJ, Binder CR, Scholz RW (2011) Animal bone disposal during the BSE crisis in Switzerland—an example of a “disposal dilemma”. Gaia 20(2):112–121Google Scholar
  143. Lavoisier AL (1776) Essays physical and chemical. (trans: Thomas Henry). Johnson, LondonGoogle Scholar
  144. Laws D, Scholz RW, Shiroyama H, Susskind L, Suzuki T, Weber O (2004) Expert views on sustainability and technology implementation. Int J Sustai Dev World Ecol 11(3):247–261Google Scholar
  145. Lee GF, Jones RA (1986) Detergent phosphate bans and eutrophication. Environ Sci Technol 20(4):330–331. doi: 10.1021/es00146a003 Google Scholar
  146. Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Global Biogeochemical Cycles 18(1). doi:Gb100910.1029/2003gb002108Google Scholar
  147. Leibniz GW (1710) Historia inventionis Phosphori. Miscellenea Berolnensia ad incrementum scientarium. Sumptibus J. Ch. Papenii, BerlinGoogle Scholar
  148. Lelle MA, Gold MA (1994) Agroforestry systems for temperate climates. Forest Conserv History 38(3):118–126Google Scholar
  149. Leubner C (2013) The seed biology place. Accessed 12 July 2013
  150. Lifset R, Graedel TE (2002) Industrial ecology: goals and definitions. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publishing Inc, Cheltenham, pp 3–15Google Scholar
  151. Litke DW (1999) Review of phosphorus control measures in the United States and their effects on water quality. Water-Resources Investigations Report 99–4007. USGS, DenverGoogle Scholar
  152. Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environment impacts from a consumption perspective. J Ind Ecol 12(2):229–247Google Scholar
  153. Löffler H (2013) Personal communication on biomass increase in Lake Constance after 2002, 1 Aug 2013. LangenargenGoogle Scholar
  154. LUBW (2013) Total phosphorus and phytoplacton biomass in the Lake Constance, updating of Figure 3 of Müller H., Lake Constance—a model for integrated lake restoration with international cooperation, Water Science and Technology, vol 46 (6–7). Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Langenargen, pp 93–98Google Scholar
  155. Ma WQ, Ma L, Li JH, Wang FH, Sisak I, Zhang FS (2011) Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere 84(6):814–821. doi: 10.1016/j.chemosphere.2011.04.055 Google Scholar
  156. MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011a) Agronomic phosphorus imbalances across the world’s croplands. Proc Nat Acad Sci USA 108(7):3086–3091Google Scholar
  157. MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011b) Agronomic phosphorus imbalances across the world’s croplands. Supporting information. Proc Nat Acad Sci USA 108(7):1–9Google Scholar
  158. MacDonald JM, Ribaudo MO, Livingston MJ, Beckman J, Huang W (2009) Manure use for fertilizer and for energy. Report to Congress. USDAGoogle Scholar
  159. Marx RE (2008) Uncovering the cause of “Phossy Jaw” Circa 1858 to 1906: Oral and maxillofacial surgery closed case files-case closed. J Oral Maxillofac Surg 66(11):2356–2363. doi: 10.1016/j.joms.2007.11.006 Google Scholar
  160. Matsubae K, Kajiyama J, Hiraki T, Nagasaka T (2011) Virtual phosphorus ore requirement of Japanese economy. Chemosphere 84(6):767–772Google Scholar
  161. Matsubae-Yokoyama K, Kubo H, Nakajima K, Nagasaka T (2009) A material flow analysis of phosphorus in Japan. The iron and steel industry as a major phosphorus source. J Ind Ecol 13(5):687–705Google Scholar
  162. McDonough W, Braungart M, Anastas PT, Zimmerman JB (2003) Applying the principles of green engineering to cradle-to-cradle design. Environ Sci Technol 37(23):434A–441A. doi: 10.1021/es0326322 Google Scholar
  163. McNeill JR, Winiwarter A (2004) Breaking the sod: humankind, history, and soil. Science 304(5677):1627–1629. doi: 10.1126/science.1099893 Google Scholar
  164. Mehlum H, Moene K, Torvik R (2006) Institutions and the resource curse. Econ J 116(508):1–20. doi: 10.1111/j.1468-0297.2006.01045.x Google Scholar
  165. Merton RK (1938) Science, technology and society in the seventeenth century England. Osiris 4:360–632Google Scholar
  166. Metzger MJ, Schroter D, Leemans R, Cramer W (2008) A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe. Reg Environ Change 8(3):91–107. doi: 10.1007/s10113-008-0044-x Google Scholar
  167. Mew M (2013) Personal communication, STPP production for detergents, 27 July 2013Google Scholar
  168. Mihelcic JR, Fry LM, Shaw R (2011) Global potential of phosphorus recovery from human urine and feces. Chemosphere 84(6):832–839. doi: 10.1016/j.chemosphere.2011.02.046 Google Scholar
  169. Minsch J, Feindt P-H, Meister H-P, Schneidewind U, Schulz T (1998) Institutionelle Reformen für eine Politik der Nachhaltigkeit. Springer, BerlinGoogle Scholar
  170. Mitchell D (2008) A note on rising food prices. World Bank Policy Research Working Paper Series, vol 4682. World Bank—Development Economics Group (DEC), WashingtonGoogle Scholar
  171. Mojabi SM, Feizi F, Navazi A, Ghourchi M (2010) Environmental impact of white phosphorus weapons on urban areas. 2010 International conference on environmental engineering and applications (ICEEA), pp 112–116. doi: 10.1109/iceea.2010.5596102
  172. Molina M, Aburto F, Calderon R, Cazanga M, Escudey M (2009) Trace element composition of selected fertilizers used in Chile: phosphorus fertilizers as a source of long-term soil contamination. Soil Sediment Contam 18(4):497–511. doi: 10.1080/15320380902962320 Google Scholar
  173. Moss DA (1994) Kindling a flame under federalism—progressive reformers, corporate elites, and the phosphorus match campaign of 1909–1912. Bus Hist Rev 68(2):244–275. doi: 10.2307/3117443 Google Scholar
  174. Moyle PR, Piper DZ (2004) Western phosphate field—depositional and economic deposit models. In: Hein JR (ed) Life cycle of the phosphoria formation: from deposition to post-mining environment. Handbook of Exploration and Environmental Geochemistry, vol 8. Elsevier, Amsterdam, pp 575–598Google Scholar
  175. Müller H (2002) Lake Constance—a model for integrated lake restoration with international cooperation. Water Sci Technol 46(6–7):93–98Google Scholar
  176. National Research Council (2008) Minerals, Critical Minerals, and the U.S. Economy. National Academies Press, WashingtonGoogle Scholar
  177. Nearing MA, Pruski FF, O’Neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50Google Scholar
  178. Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (2009) The environmental food crisis—The environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal, NairobiGoogle Scholar
  179. Nicholson FA, Jones KC, Johnston AE (1994) Effect of phosphate fertilizers and atmospheric deposition on long-term changes in the cadmium content of soils and crops. Environ Sci Technol 28(12):2170–2175. doi: 10.1021/es00061a027 Google Scholar
  180. Novotny V, Imhoff KR, Otthoff M, Krenkel PA (1989) Handbook of urban drainage and wastewater. Wiley, New YorkGoogle Scholar
  181. Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390(1):53–57. doi: 10.1016/j.scitotenv.2007.09.031 Google Scholar
  182. Oenema O, van Liere L, Schoumans O (2005) Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. J Hydrol 304(1–4):289–301. doi: 10.1016/j.jhydrol.2004.07.044 Google Scholar
  183. Oertli JJ (2008) Fertlizers, inorganic. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 247–248Google Scholar
  184. Ott C, Rechberger H (2012) The European phosphorus balance. Resour Conserv Recycl 60:159–172. doi: 10.1016/j.resconrec.2011.12.007 Google Scholar
  185. Ott H (2012) Fertilizer markets and their interplay with commodity and food prices. European Commission, Joint Research Centre, Institute for Prospective Technological Studies, SevillaGoogle Scholar
  186. Paris Q (1992) The return of von Liebig law of the minimum. Agron J 84(6):1040–1046Google Scholar
  187. Park CM, Sohn HJ (2007) Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 19(18):2465–2468. doi: 10.1002/adma.200602592 Google Scholar
  188. Pathak H, Mohanty S, Jain N, Bhatia A (2010) Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutr Cycl Agroecosyst 86(3):287–299. doi: 10.1007/s10705-009-9292-5 Google Scholar
  189. Paustenbach DJ (ed) (2002) Human and ecological risk assessment. Theory and practice. Wiley, New YorkGoogle Scholar
  190. Petroianu GA (2010) History of organophosphate synthesis: the very early days. Die Pharm Int J Pharm Sci 65(4):306–311Google Scholar
  191. Pimentel D, Whitecraft M, Scott ZR, Zhao L, Satkiewicz P, Scott TJ, Phillips J, Szimak D, Singh G, Gonzalez DO, Moe TL (2010) Will limited land, water, and energy control human population numbers in the future? Human Ecol 38(5):599–661Google Scholar
  192. Polprasert C (2007) Organic waste recycling—technology and management. IWA Publishing, LondonGoogle Scholar
  193. Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact 14(2):1–22. doi:210.1175/2009ei288.1Google Scholar
  194. Prud’homme M (2010) World phosphate rock flows, losses and uses. Paper presented at the British Sulphur Events Phosphates, Brussels, 22–24 March 2010Google Scholar
  195. Prud’homme M (2013) Personal communication. Difference between IFA and IFDC data on losses. Paris, 11 Aug 2013Google Scholar
  196. Quazi A, Islam R (2008) The reuse of human excreta in Bangladesh. In: Beyond construction: use by all—a collection of case studies from sanitation and hygiene promotion practitioners in South Asia. IRC International Water and Sanitation Centre (The Netherlands). London, DelftGoogle Scholar
  197. Ragnarsdottir KV, Sverdrup HU, Koca D (2011) Challenging the planetary boundaries I: Basic principles of an integrated model for phosphorous supply dynamics and global population size. Appl Geochem 26:S303–S306. doi: 10.1016/j.apgeochem.2011.03.088 Google Scholar
  198. Regh W (1996) Translator’s introduction. In: Habermas J (ed) Contributions to a discourse theory of law and democracy. MIT Press, CambridgeGoogle Scholar
  199. Reller A (2011) Criticality of metal resources for functional materials used in electronics and microelectronics. Phys Status Solid-Rapid Res Lett 5(9):309–311. doi: 10.1002/pssr.201105126 Google Scholar
  200. Reller A, Zepf V, Achzet B (2013) The importance of rare metals for emerging technologies. In: Angrick M, Burger A, Lehmann H (eds) Factor X, re-source-designing the recycling society. Springer, Dordrecht, pp 203–220Google Scholar
  201. Richmond L, Stevenson J, Turton A (eds) (2003) The pharmaceutical industry. A guide to historical records. Ashgate, BurlingtonGoogle Scholar
  202. Roberts TL (in print) Cadmium and phosphorous fertilizers: the issues and the science. Procedia engineering (2nd international symposium on innovation and technology in the phosphate industry [SYMPHOS 2013])Google Scholar
  203. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, III, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14 (2).
  204. Roosevelt FD (1938) Message to congress on phosphates for soil fertility, 20 May 1938. In: G Peters, JT Woolley, The American Presidency Project.
  205. Rosegrant MW, Ringler C, Msangi S (2008) International model for policy analysis of agricultural commodities and trade (IMPACT): model description. IFPRI, WashingtonGoogle Scholar
  206. Roy AH, Hellums D, Scholz RW , Beaver C (2014) Fertilizers change(d) the world. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 114–117Google Scholar
  207. Ruddy BC, Lorenz DL, Mueller DK, Norton GA, Leahy PP (2006) Country level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. U.S. Department of the Interior & U.S. Geological Survey, Reston, VAGoogle Scholar
  208. Rustad JR (2012) Peak nothing: recent trends in mineral resource production. Environ Sci Technol 46:1903–1906Google Scholar
  209. Ruttenberg KC (2003) The global phosphorus cycle. Biogeochemistry 8:585–643Google Scholar
  210. Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365(9457):442–444Google Scholar
  211. Sanders DR, Irwin SH (2010) A speculative bubble in commodity futures prices? Cross-sectional evidence. Agric Econ 41(1):25–32. doi: 10.1111/j.1574-0862.2009.00422.x Google Scholar
  212. Sattari SZ (2013) Global P use efficiency, figure produced for this paper. 13 June 2013Google Scholar
  213. Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci USA 109(16):6348–6353. doi: 10.1073/pnas.1113675109 Google Scholar
  214. Schipanski ME, Bennett EM (2012) The influence of agricultural trade and livestock production on the global phosphorus cycle. Ecosystems 15(2):256–268. doi: 10.1007/s10021-011-9507-x Google Scholar
  215. Schipper W (2013) Personal communication. 9 July 2013Google Scholar
  216. Schlesinger P (1991) Biogeochemistry. An analysis of global change. Academic Press, San DiegoGoogle Scholar
  217. Schlezinger DR, Howes BL (2000) Organic phosphorus and elemental ratios as indicators of prehistoric human occupation. J Archaeol Sci 27(6):479–492. doi: 10.1006/jasc.1999.0464 Google Scholar
  218. Schnee R, Stevens HC, Vermeulen M (2014) Phosphorus in the diet and human health. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 232–236Google Scholar
  219. Schnug E, Haneklaus S, Schnier C, Scholten LC (1996) Issues of natural radioactivity in phosphates. Commun Soil Sci Plant Anal 27(3–4):829–841. doi: 10.1080/00103629609369600 Google Scholar
  220. Schnug E, Katz S, Stöven K, Godlinski F (2011) Die Nutzung von Schlachtnebenproducten als Dünger. Paper presented at the Die (Wieder-)Nutzung von Schlachtnebenprodukten, Tierärztliche Hochschule HannoverGoogle Scholar
  221. Scholz RW (1987) Cognitive strategies in stochastic thinking. Reidel, DordrechtGoogle Scholar
  222. Scholz RW (2000) Mutual learning as a basic principle of transdisciplinarity. In: Scholz RW, Häberli R, Bill A, Welti M (eds) Transdisciplinarity: Joint problem-solving among science, technology and society. Workbook II: Mutual learning sessions. Proceedings of the international transdisciplinarity 2000 conference. Haffmans Sachbuch, Zürich, pp 13–17Google Scholar
  223. Scholz RW (2011a) Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press, CambridgeGoogle Scholar
  224. Scholz RW (2011b) The need for global governance of ecosystem services: a human-environment systems perspective on biofuel production. In: Koellner T (ed) Ecosystem services and global trade of natural resources Routledge, Abingdon, pp 57–80Google Scholar
  225. Scholz RW, Binder CR (2004) Principles of human-environment systems (HES) research. In: Pahl-Wostl C, Schmidt S, Rizzoli AE, Jakeman AJ (eds) Complexity and integrated resources management transactions of the 2nd biennial meeting of the international environmental modelling and software society, vol 2. Zentrum für Umweltkommunikation (ZUK), Osnabrück, pp 791–796Google Scholar
  226. Scholz RW, Blumer YB, Brand FS (2012) Risk, vulnerability, robustness, and resilience from a decision-theoretic perspective. J Risk Res 15(3):313–330. doi: 10.1080/13669877.2011.634522 Google Scholar
  227. Scholz RW, Lang DJ, Wiek A, Walter AI, Stauffacher M (2006) Transdisciplinary case studies as a means of sustainability learning: historical framework and theory. Int J Sustain High Educ 7(3):226–251Google Scholar
  228. Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) (2014) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, BerlinGoogle Scholar
  229. Scholz RW, Schmitt H-J, Vollmer W, Vogel A, Neisel F (1990) Zur Abschätzung des gesundheitlichen Risikos kadmiumbelasteter Hausgärten. [Assessing the health risks from cadmium-contaminated residential gardens]. Das öffentliche Gesundheitswesen 52:161–167Google Scholar
  230. Scholz RW, Stauffacher M (2007) Managing transition in clusters: area development negotiations as a tool for sustaining traditional industries in a Swiss prealpine region. Environ Plann A 39(10):2518–2539Google Scholar
  231. Scholz RW, Tietje O (2002) Embedded case study methods: integrating quantitative and qualitative knowledge. Sage, Thousand OaksGoogle Scholar
  232. Scholz RW, Ulrich AE, Eilittä M, Roy AH (2013) Sustainable use of phosphorus: a finite resource. Sci Total Environ 461–462:799–803Google Scholar
  233. Scholz RW, Wellmer F-W (2013) Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Global Environ Change 23:11–27Google Scholar
  234. Scholz RW, Wiek A (2005) Operational eco-efficiency: comparing firms’ environmental investments in different domains of operation. J Ind Ecol 9(4):155–170Google Scholar
  235. Sharpley A, Kleinman P, Weld J (2004) Assessment of best management practices to minimise the runoff of manure-borne phosphorus in the United States. New Zealand J Agric Res 47(4):461–477Google Scholar
  236. Sharpley AN, Weld JL, Beegle DB, Kleinman PJA, Gburek WJ, Moore PA, Mullins G (2003) Development of phosphorus indices for nutrient management planning strategies in the United States. J Soil Water Conserv 58(3):137–152Google Scholar
  237. Sharrock P, Fiallo M, Nzihou A, Chkir M (2009) Hazardous animal waste carcasses transformation into slow release fertilizers. J Hazard Mater 167(1–3):119–123. doi: 10.1016/j.jhazmat.2008.12.090 Google Scholar
  238. Sheldrick WF, Lingard J (2004) The use of nutrient audits to determine nutrient balances in Africa. Food Policy 29(1):61–98. doi: 10.1016/j.foodpol.2004.01.004 Google Scholar
  239. Shinh A (2012) The outlook for industrial & food phosphates. Paper presented at the Phosphates 12, El JadidaGoogle Scholar
  240. Sims JT, Simard RR, Joern BC (1998) Phosphorus loss in agricultural drainage: historical perspective and current research. J Environ Qual 27(2):277–293Google Scholar
  241. Smil V (1999) Crop residues: agriculture’s largest harvest—Crop residues incorporate more than half of the world agricultural phytomass. Bioscience 49(4):299–308. doi: 10.2307/1313613 Google Scholar
  242. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Env 25:53–88Google Scholar
  243. Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. The MIT Press, CambridgeGoogle Scholar
  244. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B-Biol Sci 363(1492):789–813. doi: 10.1098/rstb.2007.2184 Google Scholar
  245. Smith SR (1995) Agricultural recycling of sewage sludge and the environment. Oxford University Press, OxfordGoogle Scholar
  246. Stumm W, Stumm-Zollinger E (1972) The role of phosphorus in eutrophication. In: Mitchell RC (ed) Water pollution microbiology. Wiley, New York, pp 11–42Google Scholar
  247. Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B, de Vries W, van Grinsven HJM, Abrol YP, Adhya TK, Billen G, Davidson EA, Datta A, Diaz R, Erisman JW, Liu XJ, Oenema O, Palm C, Raghuram N, Reis S, Scholz RW, Sims T, Westhoek H, Zhang FS (2013) Our Nutrient World. The challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology (CEH) and the United Nations Environment Program (UNEP), Edinburgh, NairobiGoogle Scholar
  248. Sutton MA, Bleeker A, Howard CM, Erisman JW, Abrol YP, Bekunda M, Datta A, Davidson E, de Vries W, Oenema O, Zhang FS, from: ic, Adhya TK, Billen G, Bustamante M, Chen D, Diaz R, Galloway JN, Garnier J, Greenwood S, Grizzetti B, Kilaparti R, Liu XJ, Palm C, Plocq, Fichelet V, Raghuram N, Reis S, Roy A, Sachdev M, Sanders K, Scholz RW, Sims T, Westhoek H, Yan XY, Zhang Y (2012) Our nutrient world The challenge to produce more food & energy with less pollution. In: Centre for ecology and hydrology on behalf of the global partnership on nutrient management (GPNM) and the International Nitrogen Initiative (INI) (ed) Key Messages for Rio+20. FalmouthGoogle Scholar
  249. Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic FAO, RomeGoogle Scholar
  250. Tanner EVJ, Kapos V, Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73(1):78–86. doi: 10.2307/1938722 Google Scholar
  251. The World Bank (2012) Fertilizer consumption (kilograms per hectare of arable land). The World Bank. Accessed 7 Dec 2012
  252. Thompson Klein J, Grossenbacher-Mansuy W, Häberli R, Bill A, Scholz RW, Welti M (eds) (2001) Transdisciplinarity: joint problem solving among science, technology, and society. An effective way for managing complexity. Birkhäuser, BaselGoogle Scholar
  253. Tillman D, Cassmann KG, Matson P, Naylor R, Polansky S (2002) Agricultural sustainability and intense production practices. Nature 418(6898):671–677Google Scholar
  254. Tilman D, Lehman C (2001) Human-caused environmental change: impacts on plant diversity and evolution. Proc Natl Acad Sci USA 98(10):5433–5440. doi: 10.1073/pnas.091093198 Google Scholar
  255. Tirado R, Allsopp M (2012) Phosphorus in agriculture. Greenpeace, AmsterdamGoogle Scholar
  256. Udo de Haes HA, Van der Voet E, Kleijn R (1997) Substance flow analysis (SFA), an analytical tool for integrated chain management. In: Bringezu S, Fischer-Kowalski M, Kleijn R, Viveka P (eds) Regional and national material flow accounting: From paradigm to practice of sustainability. Proceedings of the ConAccount workshop 21–23 January, 1997 in Leiden, The Netherlands. Wuppertal Institute for Climate, Environment and Energy, WuppertalGoogle Scholar
  257. Ulex GL (1845) On struvite, a new mineral. Memoirs and proceedings of the chemical society CLXIII:106–110Google Scholar
  258. Ulrich AE (2011) A lake of opportunity. Rethinking phosphorus pollution and resource scarcity. In: Klopfer N, Mauch C (eds) Big country, big issues: Canada’s environment, culture and history. LMU Munich, Rachel Carson Center for Environment and Society, Munich, pp 86–100Google Scholar
  259. UN (2006) United Nations conference on trade and development. The emerging biofuel market. Regulatory, trade and development implications. United Nations, New YorkGoogle Scholar
  260. UN (2011) Environmental Indicators. United Nations Statistics Division. Accessed 1 March 2013
  261. UN (2013) World population prospects. The 2012 revision. Key findings and advance tables. United Nations, New YorkGoogle Scholar
  262. UNEP and IFA (2001) Environmental aspects of phosphate and potash mining. United Nations Environment 1 Programme (UNEP) and International Fertilizer Industry Association (IFA), ParisGoogle Scholar
  263. USCB (2009) Data from U.S. Census Bureau, International Database, update 2009, retrieved February 12, 2011Google Scholar
  264. USGS (2000) Mineral commodity summary 2000. WashingtonGoogle Scholar
  265. USGS (2010) Mineral commodity summary 2010. WashingtonGoogle Scholar
  266. USGS (2012) Mineral commodity summary 2012. WashingtonGoogle Scholar
  267. USGS (2013a) Geology research and information. USGS. Accessed 15 April 2013
  268. USGS (2013b) Mineral commodity summary 2013. WashingtonGoogle Scholar
  269. van der Molen DT, Pot R, Evers CHM, van Nieuwerburgh LLJ (eds) (2012) Referenties en Maatlatten voor natuurlijke Watertypen voor de Kaderrichtlijn Water 2015–2021. STOWA Rapport, AmersfordGoogle Scholar
  270. van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. IFDC, Muscle ShoalsGoogle Scholar
  271. van Otterdijk R, Meybeck A (2011) Global food losses and food waste. FAO, RomeGoogle Scholar
  272. Venterink HO (2011) Does phosphorus limitation promote species-rich plant communities? Plant Soil 345(1–2):1–9. doi: 10.1007/s11104-011-0796-9 Google Scholar
  273. VFRC (2012) Global research to nourish the world. A blueprint for food security. Virtual Fertilizer Reserach Center, WashingtonGoogle Scholar
  274. Villalba G, Liu Y, Schroder H, Ayres RU (2008) Global phosphorus flows in the industrial economy from a production perspective. J Ind Ecol 12(4):557–569Google Scholar
  275. Vogelsang P (1950) New techniques in seed pelleting. In: American society of sugar of beet technologists (ed) Sixth general meeting of the american society of sugar beet technologists, 6–9 Feb 1950, Detroit, MI, 11 Feb 2012 1950. pp 75–78Google Scholar
  276. Vollenweider RA (1970) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, ParisGoogle Scholar
  277. von Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie [The organic chemistry in its application on agriculture and physiology]. Friedrich von Vieweg, BraunschweigGoogle Scholar
  278. von Pier JC (2006) History’s great untold stories: obscure and fascinating accounts with important lessons for the world. Murdoch, Millers PointGoogle Scholar
  279. Vu MQ, Le QB, Scholz RW, Vlek PL (2012) Detecting geographic hotspots of human-induced land degradation in Vietnam and characterization of their social-ecological types. In: IEEE (ed) IEEE international geoscience and remote sensing symposium, Munich, 22–27 July 2012Google Scholar
  280. Wagner H (1999) Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Roshstoffe. teilstudie Phosphat, vol SH 5. Wirtschaftsgeologie, Bereichte zur Roshstofgfwirtschaft. Bundesanstalt für Geowissenschaften und Rohstoffe und Staatliche Geologische Dienste in der Bundesrepublik Deutschland, HannoverGoogle Scholar
  281. Wang F, Sims JT, Ma L, Ma W, Dou Z, Zhang F (2011) The phosphorus footprint of China’s food Chain: Implications for food security, natural resource management, and environmental quality. J Environ Qual 40(4):1081–1089. doi: 10.2134/jeq2010.0444 Google Scholar
  282. Ward J (2008) Peak phosphorus: quoted reserves vs. production history. Energy Bulletin.
  283. Weber O, Delince J, Duan Y, Maene L, McDaniels T, Mew M, Schneidewid U, Steiner G (2014) Trade and finance as cross-cutting issues in the global phosphate and fertilizer market. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Berlin, pp 275–294Google Scholar
  284. Webster’s (1913) basic slag. Webster’s Revised Unabridged DictionaryGoogle Scholar
  285. Webster’s (2002a) “loss”. Third New International Dictionary, Unabridged. Merriam-WebsterGoogle Scholar
  286. Webster’s (2002b) “sink”. Third New International Dictionary, Unabridged. Merriam-WebsterGoogle Scholar
  287. Wetzel RG (1983) Limnology, 2nd edn. Saunders College Publishing, PhiladelphiaGoogle Scholar
  288. Wilkinson TJ (1982) The definition of ancient manured zones by means of extensive sherd-sampling techniques. J Field Archeology 9(3):1982Google Scholar
  289. Wisniak J (2005) Phosphorus-from discovery to commodity. Indian J Chem Technol 12(1):108–122Google Scholar
  290. Woltering DM (2004) Health risk assessment for metals in inorganic fertilizers: development and use in risk management. In: Hall WJ, Robarge WP (eds) In environmental impact of fertilizer on soil and water. ACS Symposium Series, vol 872. American Chemical Society, Washington, pp 124–147Google Scholar
  291. Wright BD (2011) The economics of grain price volatility. Appl Econ Perspect Policy 33(1):32–58. doi: 10.1093/aepp/ppq033 Google Scholar
  292. YARA (2013) Yara International ASA second quarter results 2013. YARA International ASA. . 19 July 2013
  293. Zhang NQ, Wang MH, Wang N (2002) Precision agriculture—a worldwide overview. Comput Electron Agriculture 36(2–3):113–132. doi: 10.1016/s0168-1699(02)00096-0 Google Scholar
  294. Zhang WF, Ma WQ, Ji YX, Fan MS, Oenema O, Zhang FS (2008) Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr Cycl Agroecosyst 80(2):131–144. doi: 10.1007/s10705-007-9126-2 Google Scholar
  295. Zhang YH, Caupert J (2012) Survey of mycotoxins in U.S. distiller’s dried grains with solubles from, 2009 to 2011. J Agricultural Food Chem 60(2):539–543. doi: 10.1021/jf203429f Google Scholar
  296. Zheng L (2013) Import and export. Phosphorus Industry China Monthly Report 3(1)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Roland W. Scholz
    • 1
    • 2
    Email author
  • Amit H. Roy
    • 3
  • Deborah T. Hellums
    • 3
  1. 1.Fraunhofer Project Group Materials Recycling and Resource Strategies IWKSAlzenauGermany
  2. 2.ETH ZürichNatural and Social Science Interface (NSSI)ZürichSwitzerland
  3. 3.International Fertilizer Development Center (IFDC)Muscle ShoalsUSA

Personalised recommendations