An Argument for Axion Dark Matter

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 148)

Abstract

An argument is presented that the dark matter is axions, at least in part. It has three steps. First, axions behave differently from the other forms of cold dark matter because they form a rethermalizing Bose-Einstein condensate (BEC). Second, there is a tool to distinguish axion BEC from the other dark matter candidates on the basis of observation, namely the study of the inner caustics of galactic halos. Third, the observational evidence for caustic rings of dark matter is consistent in every aspect with axion BEC, but not with the other proposed forms of dark matter.

Keywords

Dark Matter Sterile Neutrino Cold Dark Matter Galactic Center Lower Energy State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

 I would like to thank the Aspen Center for Physics for its support (NSF Grant #1066293) and its hospitality while working on this paper. This work was supported in part by the U.S. Department of Energy under grant DE-FG02-97ER41209.

References

  1. 1.
    Sikivie, P., Yang, Q.: Bose-Einstein condensation of dark matter axions. Phys. Rev. Lett. 103, 111301 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Erken, O., Sikivie, P., Tam, H., Yang, Q.: Cosmic axion thermalization. Phys. Rev. D85, 063520 (2012)ADSGoogle Scholar
  3. 3.
    Sikivie, P.: Phys. Lett. B432, 139 (1998); Phys. Rev. D60, 063501 (1999)Google Scholar
  4. 4.
    Natarajan, A., Sikivie, P.: The inner caustics of cold dark matter halos. Phys. Rev. D73, 023510 (2006)ADSGoogle Scholar
  5. 5.
    Duffy, L.D., Sikivie, P.: The Caustic Ring model of the Milky Way halo. Phys. Rev. D78, 063508 (2008)ADSGoogle Scholar
  6. 6.
    Sikivie, P., Tkachev, I., Wang, Y.: Phys. Rev. Lett. 75, 2911 (1995); Phys. Rev. D56, 1863 (1997)Google Scholar
  7. 7.
    Fillmore, J.A., Goldreich, P.: Astrophys. J. 281, 1 (1984); Bertschinger, E.: Astrophys. J. Suppl. 58, 39 (1985)Google Scholar
  8. 8.
    Sikivie, P.: Phys. Lett. B695, 22 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Efstathiou, G., Jones, B.J.T.: Mon. Not. R. Astron. Soc. 186, 133 (1979); Barnes, J., Efstathiou, G.: Astrophys. J. 319, 575(1987); Cervantes-Sodi, B., et al.: Rev. Mex. Astron. Astrofis. 34, 87 (2008)Google Scholar
  10. 10.
    Sikivie, P.: An argument that the dark matter is axions. arXiv:1210.0040. To appear in the Proceedings of the 24th Rencontres de Blois on Particle Physics and Cosmology, Blois, France, 27 May–1 June 2012Google Scholar
  11. 11.
    Peccei, R.D., Quinn, H.: Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D16, 1791 (1977); Weinberg, S.: Phys. Rev. Lett. 40, 223 (1978); Wilczek, F.: Phys. Rev. Lett. 40, 279 (1978)Google Scholar
  12. 12.
    For a recent discussion of a broad class of axion-like particles, see: Arias, P., et al.: J. Cosmol. Astropart. Phys. 06, 013 (2012)Google Scholar
  13. 13.
    Asztalos, S.J., et al.: Phys. Rev. Lett. 104, 041301 (2010), and references thereinGoogle Scholar
  14. 14.
    Aune, S., et al.: Phys. Rev. Lett. 107, 261302 (2011); Ohta, R., et al.: Nucl. Instrum. Methods A670, 73 (2012)Google Scholar
  15. 15.
    Ehret, K., et al.: Phys. Lett. B689, 149 (2010); Mueller, G., et al.: Phys. Rev. D80, 072004 (2009), and references thereinGoogle Scholar
  16. 16.
    Sin, S.-J.: Phys. Rev. D50, 3650 (1994); Goodman, J.: New Astron. Rev. 5, 103 (2000); Hu, W., Barkana, R., Gruzinov, A.: Phys. Rev. Lett. 85, 1158 (2000); Mielke, E.W., Vélez Pérez, J.A.: Phys. Lett. B671, 174 (2009); Lee, J.-W., Lim, S.: J. Cosmol. Astropart. Phys. 1001, 007 (2010); Lundgren, A., Bondarescu, M., Bondarescu, R., Balakrishna, J.: Astrophys. J. 715, L35 (2010); Marsh, D.J., Ferreira, P.G.: Phys. Rev. D82, 103528 (2010); Lora, V., et al.: J. Cosmol. Astropart. Phys. 02, 011 (2012)Google Scholar
  17. 17.
    Rindler-Daller, T., Shapiro, P.: Mon. Not. R. Astron. Soc. 422, 135 (2012), and references thereinGoogle Scholar
  18. 18.
    Bianchi, M., Grasso, D., Ruffini, R.: Jeans mass of a cosmological coherent scalar field. Astron. Astrophys. 231, 301 (1990)ADSGoogle Scholar
  19. 19.
    Chavanis, P.-H.: Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter. Astrophys. J. 537, A127 (2012)Google Scholar
  20. 20.
    Navarro, J.F., Benz, W.: Astrophys. J. 380, 320 (1991); White, S.D.M., Navarro, J.F.: Mon. Not. R. Astron. Soc. 265, 271 (1993); Navarro, J.F., Steinmetz, M.: Astrophys. J. 513, 555 (1999)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations