Advertisement

Positioning Two Redundant Arms for Cooperative Manipulation of Objects

  • Adrià  ColoméEmail author
  • Carme Torras
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

Bimanual manipulation of objects is receiving a lot of attention nowadays, but there is few literature addressing the design of the arms configuration. In this paper, we propose a way to analyze the relative positioning of two redundant arms, both equipped with spherical wrists, in order to obtain the best common workspace for grasping purposes. Considering the geometry of a robot with a spherical wrist, the Cartesian workspace can be discretized, with an easy representation of the feasible end-effector orientations at each point using bounding cones. After having characterized the workspace for one robot arm, we can evaluate how good each of the discretized poses relate with an identical arm in another position with a quality function that considers orientations. In the end, we obtain a quality value for each relative position of two arms, and we perform an optimization using genetic algorithms to obtain the best workspace for a cooperative task.

Keywords

Robot design Workspace Bimanual manipulation 

Notes

Acknowledgments

This work is partially supported by EU Project IntellAct (FP7-269959), by the CSIC Project CINNOVA (201150E088), and by the Catalan Research Commission through SGR-00155.

References

  1. 1.
    Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—A survey. Rob. Auton. Syst. 60, 1340–1353 (2012)CrossRefGoogle Scholar
  2. 2.
    Hyon, S.-H., Hale, J.G., Cheng, G.: Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Rob. 23(5), 884–898 (2007)Google Scholar
  3. 3.
    Vahrenkamp, N., Przybylski, M., Asfour, T., Dillmann, R.: Bimanual grasp planning. IEEE-RAS Int. Conf. Humanoid Rob. 4, 493–499 (2011)Google Scholar
  4. 4.
    Yoshikawa, T.: Dynamic manipulability of robot manipulators. IEEE ICRA 2, 1033–1038 (1985)Google Scholar
  5. 5.
    Zacharias, F., Leidner, D., Schmidt, F., Borst, C., Hirzinger, G.: Exploiting structure in two-armed manipulation tasks for humanoid robots. IEEE/RSJ IROS 5446–5452 (2010)Google Scholar
  6. 6.
    Ott, Ch., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, ch., Albu-Schaffer, A., Brunner, B., Hirschmoller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T., Zacharias, F., Hirzinger. G.: A humanoid two-arm system for dexterous manipulation. IEEE RAS Conf. Humanoid Robots 276–283 (2006)Google Scholar
  7. 7.
    Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: Representing robot capabilities. IEEE/RSJ IROS 3229–3236 (2007)Google Scholar
  8. 8.
    Colomé, A., Torras, C.: Redundant inverse kinematics: experimental comparative review and two enhancements. IEEE/RSJ IROS 5333–5340 (2012)Google Scholar
  9. 9.
    Shimizu, M., Kakuya, H., Yoon, W.-K., Kitagaki, K., Kosuge, K.: Analytical inverse kinematic computation for 7-dof redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Rob. 24(5) 1131–1142 (2008)Google Scholar
  10. 10.
    Singh, G.K., Claassens, J.: An analytical solution for the inverse kinematics of a redundant 7-dof manipulator with link offsets. IEEE/RSJ IROS, 2976–2982 (2010)Google Scholar
  11. 11.
    Barequet, G., Elber, G.: Optimal bounding cones of vectors in three dimensions. Inf. Process. Lett. 93(2), 83–89 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Saff, E., Kuijlaars, A.: Distributing many points on the sphere. Math. Intelligencer 19(1), 5–11 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Guizzo, E.: DARPA Seeking to revolutionize robotic manipulation. IEEE Spectr. Technol. Sci. News (2010) http://spectrum.ieee.org/automaton/robotics/robotics-software/darpa-arm-program
  14. 14.
    Asfour, T., Berns, K., Dillmann, R.: The humanoid robot ARMAR: Design and control. IEEE/APS Int. Conf. Humanoid Robots 7–8 (2000)Google Scholar
  15. 15.
    Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., Dillmann, R.: ARMAR-III: An integrated humanoid platform for sensory-motor control. IEEE/RAS Int. Conf. Humanoid Robots 169–175 (2006)Google Scholar
  16. 16.
    Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.:Global task space manipulability ellipsoids for multiple-arm systems. IEEE Trans. Rob. Auton. 7, 5 (1991)Google Scholar
  17. 17.
    Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Rob. Auton. 16, 4 (2000)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut de Robòtica i Informàtica IndustrialCSIC-UPCBarcelonaSpain

Personalised recommendations