A Proposal for Detection and Estimation of Golf Putting

  • Gonçalo DiasEmail author
  • J. Miguel A. Luz
  • Micael S. Couceiro
  • Carlos M Figueiredo
  • Nuno Ferreira
  • Pedro Iglésias
  • Rui Mendes
  • Maria Castro
  • Orlando Fernandes
Conference paper


This study presents an experimental research design of a PhD work, studying the effects of the variability in the performance of the Golf putting. The instruments used to analyze the putting were two digital cameras to detect the relevant dynamic objects (i.e., ball and putter) and a biaxial accelerometer to confirm the exact moment at which the putter hits the ball. To synchronize the instruments, it was used a trigger. The ball’s trajectory and the putting movement were automatically analyzed based on visual detection and parameter estimation. The kinematic analysis of the putting was performed using the Matlab software, to determine the amplitude, velocity and acceleration of the players’ gestures. We concluded that the Golf putting action parameters are divided into different stages (i.e., backswing, downswing and follow-through) and that those can be useful to investigate the effects of variability in this movement.


Golf putting Performance Kinematic analysis Matlab Process variables 


  1. 1.
    Delay D, Nougier V, Orliaguet JP, Coelho Y (1997) Movement control in golf putting. Hum Mov Sci 16:597–619CrossRefGoogle Scholar
  2. 2.
    Hume PA, Keogh J, Reid D (2005) The role of biomechanics in maximising distance and accuracy of golf shots. Sports Med 35(5):429–449CrossRefGoogle Scholar
  3. 3.
    Pelz D (2000) Putting Bible: the complete guide to mastering the green. Publication Doubleday, New YorkGoogle Scholar
  4. 4.
    Kelso JAS (1995) Dynamics patterns: the self-organization of brain and behavior. MIT, CambridgeGoogle Scholar
  5. 5.
    Araújo D, R0ipoll H, Raab M (2009) Perspectives on cognition and action in sport. Nova Science Publishers Inc., London, UKGoogle Scholar
  6. 6.
    Davids K, Button C, Bennett S (2008) Dynamics of skill acquisition—A constraints-led approach. Human Kinetics, IllinoisGoogle Scholar
  7. 7.
    Karlsen J, Smith G, Nilsson J (2008) The stroke has only a minor influence on direc-tion consistency in golf putting among elite players. J Sports Sci 26(3):243–250CrossRefGoogle Scholar
  8. 8.
    Mendes R, Dias G, Chiviacowsky S (2010) Golfe e Aprendizagem Motora: o Efeito da Interferência Contextual na Aprendizagem do Putt. Braz J Motor Behav 5(Supplement):21–22Google Scholar
  9. 9.
    Fernandes O (2008) Tool for applied and contextual time-series observation (TACTO). 2nd Internacional Congress of Complex Systems in Sport. MadeiraGoogle Scholar
  10. 10.
    Couceiro MS, Luz JMA, Figueiredo CM, Ferreira NMF (2011) Modeling and control of biologically inspired flying robots. Robotica 30(1):107–121 (Cambridge University Press)CrossRefGoogle Scholar
  11. 11.
    Knudson DV, Morrison CS (2002) Qualitative analysis of human movement. Human Kinetics Publishers, IllinoisGoogle Scholar
  12. 12.
    Paradisis G, Rees J (2000) Kinematic analysis of golf putting for expert and novice golfers. In: Proceedings the 18th International Symposium on Biomechanics in Sports. Hong Kong, ChinaGoogle Scholar
  13. 13.
    Wholesalegolf. Golf Putters (2009) Jumbo black beauty. Accessed 21 Dec 2009
  14. 14.
    Fernandes O, Caixinha P, Malta P (2007) Techno-tactics and running distance analy-sis using one camera. J Sports Sci Med 6:204–205Google Scholar
  15. 15.
    Barros RML, Brenzikofer R, Leite NJ, Figueiroa PJ (1999) Desenvolvimento e avaliação de um sistema para análise cinemática tridimensional de movimentos humanos. Revista Brasileira de Engenharia Biomédica 15(2):79–86Google Scholar
  16. 16.
    Ohya A, Kosaka A, Kak A (1997) Vision-based navigation of mobile robot with obstacle avoidance by single camera vision and ultrasonic sensing. In: Proceedings of the 1997 IEEE/RSJ international conference on intelligent robots and systems, IROS ’97, Ibaraki, JapanGoogle Scholar
  17. 17.
    Kim YG, Kim H (2004) Layered ground floor detection for vision-based mobile robot navigation. In: Proceedings IEEE international conference on robotics and automation, ICRA‘04, Incheon, South KoreaGoogle Scholar
  18. 18.
    Schettini R (1994) Multicolored object recognition and location. Pattern Recogn Lett 15:1089–1097CrossRefGoogle Scholar
  19. 19.
    Luber M, Arras KO, Plagemann C, Burgard W (2009) Classifying dynamic objects. Autonomous Robots 26(2–3):141–151Google Scholar
  20. 20.
    Reinsch CH (1967) Smoothing by spline functions. Numer Math 10:177–183CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gonçalo Dias
    • 1
    Email author
  • J. Miguel A. Luz
    • 2
  • Micael S. Couceiro
    • 2
  • Carlos M Figueiredo
    • 2
  • Nuno Ferreira
    • 2
  • Pedro Iglésias
    • 3
  • Rui Mendes
    • 3
  • Maria Castro
    • 4
  • Orlando Fernandes
    • 5
  1. 1.Faculty of Sport Sciences and Physical EducationUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Electrotechnics EngineeringCoimbra Institute of EngineeringCoimbraPortugal
  3. 3.Coimbra College of EducationPolytechnic Institute of CoimbraCoimbraPortugal
  4. 4.Coimbra College of Health TechnologyPolytechnic Institute of CoimbraCoimbraPortugal
  5. 5.Proto-Department of Sport and HealthUniversity of EvoraCoimbraPortugal

Personalised recommendations