Advertisement

Casualties Distribution in Human and Natural Hazards

  • Carla M. A. Pinto
  • A. Mendes Lopes
  • J. A. Tenreiro Machado
Conference paper

Abstract

Catastrophic events, such as wars and terrorist attacks, big tornadoes and hurricanes, huge earthquakes, tsunamis, floods, and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties have separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data set is better approximated by two PLs instead of one. We have plotted the two PL parameters corresponding to all terrorist events occurred in every year, from 1980 to 2010. We observe an interesting pattern in the chart, where the lines, that connect each pair of points defining the double PLs, are roughly aligned to each other.

Keywords

Casualties distribution Power law behavior Double power law 

References

  1. 1.
    Auerbach F (1913) Das Gesetz der Belvolkerungskoncentration. Petermanns Geogr Mitt 59:74–76Google Scholar
  2. 2.
    Becerra O, Johnson N, Meier P, Restrepo J, Spagat M (2006) Casualties and power laws: a comparative analysis with armed conflict. Proceedings of the annual meeting of the American Political Science Association, Marriott, Loews Philadelphia, and the Pennsylvania Convention Center, Philadelphia.http://www.allacademic.com/meta/p151714_index.html
  3. 3.
    Bogen KT, Jones ED (2006) Risks of mortality and morbidity from worldwide terrorism: 1968–2004. Risk Anal 26:45–59CrossRefGoogle Scholar
  4. 4.
    Bohorquez JC, Gourley S, Dixon AR, Spagat M, Johnson NF (2009) Common ecology quantifies human insurgency. Nature 462(7275):911–914CrossRefGoogle Scholar
  5. 5.
    Carson M, Langer JS (1989) Mechanical model of an earthquake fault. Phys Rev A 40:6470–6484CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cederman LE (2003) Modeling the size of wars: from billiard balls to sandpiles. Am Polit Sci Rev 97:135–150CrossRefGoogle Scholar
  7. 7.
    Clauset A, Young M (2008) Scale invariance in global terrorism.e-print http://arxiv.org/abs/physics/0502014
  8. 8.
    Clauset A, Young M, Gleditsch KS (2007) On the frequency of severe terrorist events. J Confl Resolut 51(1):58–87CrossRefGoogle Scholar
  9. 9.
    Davis DR, Weinstein DE (2002) Bones, bombs, and break points: the geography of economic activity. Am Econ Rev 92(5):1269–1289.CrossRefGoogle Scholar
  10. 10.
    Estoup JB (1916) Gammes Stenographiques. Institut de France, ParisGoogle Scholar
  11. 11.
    Geller DS, Singer JD (1998) Nations at war: a scientific study of international conflict. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  13. 13.
    Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107CrossRefGoogle Scholar
  14. 14.
    Johnson NF, Spagat M, Restrepo JA, Becerra O, Bohorquez JC, Suarez N, Restrepo EM, Zarama R (2006) Universal patterns underlying ongoing wars and terrorism.http://arxiv.org/abs/physics/0605035
  15. 15.
    Jonkman SN (2005) Global perspectives on loss of human life caused by floods. Nat Hazards 34:151–175CrossRefGoogle Scholar
  16. 16.
  17. 17.
    National Consortium for the Study of Terrorism and Responses to Terrorism (START) (2011) Global Terrorism Database [Data file].http://www.start.umd.edu/gtd/search/Results.aspx?start_month=0&end_month=12&start_year=2011&end_year=2011&start_day=0&end_day=31
  18. 18.
    Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351CrossRefGoogle Scholar
  19. 19.
    Pareto V (1896) Cours d’Economie Politique. Droz, GenevaGoogle Scholar
  20. 20.
    Pinto CMA, Lopes AM, Tenreiro Machado JA (2012) A review of power laws in real life phenomena. Commun Nonlinear Sci Numer Simul 17(9):3558–3578CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Richardson LF (1948) Variation of the frequency of fatal quarrels with magnitude. J Am Stat Assoc 43:523–546CrossRefGoogle Scholar
  22. 22.
    Richardson LF (1960) Statistics of deadly quarrels. Quadrangle, ChicagoGoogle Scholar
  23. 23.
    Roberts DC, Turcotte DL (1998) Fractality and selforganized criticality of wars. Fractals 6:351–357CrossRefGoogle Scholar
  24. 24.
    Sornette D (2003) Critical phenomena in natural sciences, 2nd edn. Springer, Heidelberg (Chap. 14)Google Scholar
  25. 25.
    Zipf G (1932) Selective studies and the principle of relative frequency in language. Harvard University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Zipf G (1949) Human behavior and the principle of least effort. Addison-Wesley, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carla M. A. Pinto
    • 1
    • 2
  • A. Mendes Lopes
    • 3
  • J. A. Tenreiro Machado
    • 4
  1. 1.Department of MathematicsInstitute of Engineering of PortoPortoPortugal
  2. 2.Centro de Matemática da Universidade do PortoPortoPortugal
  3. 3.UISPA, IDMEC - Polo FEUP Faculty of EngineeringUniversity of PortoPortoPortugal
  4. 4.Department of Electrical EngineeringISEP-Institute of Engineering of Polytechnic of PortoPortoPortugal

Personalised recommendations