Advertisement

Fostering Children’s Probabilistic Reasoning and First Elements of Risk Evaluation

  • Laura MartignonEmail author
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

The ABC of probabilistic literacy for good decision-making should be conveyed to children at an early stage, or more precisely, before they reach their 11th year of age. This conviction is based on the view of experts who maintain that the mathematical competencies of adults who are not especially trained in mathematical subjects are those they developed when they were 9, 10 and 11 years old. This paper will show how children can be provided with elementary, yet useful tools for decision making under uncertainty. Children, as has been demonstrated empirically, can acquire a mosaic of simple, play-based activities, by means of tinker-cubes. The results reported here were guided and inspired by empirical studies on human decision making obtained by the Centre of Adaptive Behaviour and Cognition, directed by Gerd Gigerenzer.

Keywords

Fourth Grader Bayesian Reasoning Base Rate Information Sequential Partitioning Base Rate Neglect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thanks Lynn Michell for useful suggestions both on aspects of this chapter and on the formulations in the text. This work has been sponsored by the SPP 15-16 of the DFG, in the Project Models of Information Search.

References

  1. Atmaca, S., & Martignon, L. (2004). Hat sich unser Gehirn an die Wahrnehmung und an die Verarbeitung von Häufigkeiten adaptiert? Beiträge zur 46 Tagung experimentell arbeitender Psychologen Gießen (pp. 134–138). Google Scholar
  2. Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54, 695–701. CrossRefGoogle Scholar
  3. Coren, S., & Porac, C. (1977). Fifty centuries of right-handedness: the historical record. Science, 198, 631–632. CrossRefGoogle Scholar
  4. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42. CrossRefGoogle Scholar
  5. Dehaene, S. (1997). The number sense. London: Oxford University Press. Google Scholar
  6. Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361. CrossRefGoogle Scholar
  7. Fiddick, L., & Barrett, H. C. (2001). Evolution of cognition: an adaptationist perspective. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 7, pp. 4996–5000). Amsterdam: Elsevier. CrossRefGoogle Scholar
  8. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74. CrossRefGoogle Scholar
  9. Gigerenzer, G. (2004). Calculated risks: what numbers really tell us about our lives. New York: Simon and Schuster. Google Scholar
  10. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: frequency formats. Psychological Review, 102, 684–704. CrossRefGoogle Scholar
  11. Gigerenzer, G., Todd, P. M., & the ABC Group (1999). Simple heuristics that make us smart. New York: Oxford University Press. Google Scholar
  12. Hasher, L., & Chromiak, W. (1977). The processing of frequency information: an automatic mechanism? Journal of Verbal Learning and Verbal Behavior, 16, 173–184. CrossRefGoogle Scholar
  13. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychologie: General, 108, 356–388. CrossRefGoogle Scholar
  14. Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information—the case of frequency of occurrence. The American Psychologist, 39(12), 1372–1388. CrossRefGoogle Scholar
  15. Hoffrage, U., Gigerenzer, G., Krauss, S., & Martignon, L. (2002). Representation facilitates reasoning: what natural frequencies are and what they are not. Cognition, 84, 343–352. CrossRefGoogle Scholar
  16. Kahneman, D. (2011). Thinking fast and slow. New York: Farrar, Straus and Giroux. Google Scholar
  17. Kiefer, M., & Dehaene, S. (1997). The time course of parietal activation in single-digit multiplication: evidence from event-related potentials. Mathematical Cognition, 3(1), 1–30. CrossRefGoogle Scholar
  18. Koerber, S. (2003). Visualisierung als Werkzeug im Mathematischen Unterricht: Der Einfluß externer Repräsentationen auf Proportionales Denken im Grundschulalter. Hamburg: Dr. Kovac. Google Scholar
  19. Kurz-Milcke, E., & Martignon, L. (2005). Berichte des Arbeitskreises Stochastik in der Schule: Nr. 3. Lebendige Urnen und Erlebnissreiche Bäume in der Grundschule. Hildesheim: Franzbecker. Google Scholar
  20. Martignon, L., & Krauss, S. (2009). Hands on activities with fourth-graders: a tool box of heuristics for decision making and reckoning with risk. International Electronic Journal for Mathematics Education, 4(3), 117–148. Google Scholar
  21. Martignon, L., & Kurz-Milcke, E. (2005). Berichte des Arbeitskreises Stochastik in der Schule: Nr. 3. Haufen bunter Steckwürfel für eine natürliche, gendersensitive Stochastik in der Grundschule. Hildesheim: Franzbecker. Google Scholar
  22. Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320–334. Google Scholar
  23. Stern, E., Hardy, I., & Koerber, S. (2002). Die Nutzung graphisch-visueller Repräsentationsformen im Sachunterricht. In K. Spreckelsen, A. Hartinger, & K. Möller (Eds.), Ansätze und Methoden empririscher Forschung zum Sachunterricht (pp. 119–131). Bad Heilbrunn: Klinkhardt. Google Scholar
  24. Zacks, R. T., Hasher, L., & Sanft, H. (1982). Automatic encoding of event frequencies—further findings. Journal of Experimental Psychology—Human Learning and Memory, 8(2), 106–116. CrossRefGoogle Scholar
  25. Zhu, L., & Gigerenzer, G. (2006). Children can solve Bayesian problems: The role of representation in mental computation. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceLudwigsburg University of EducationLudwigsburgGermany

Personalised recommendations