Advertisement

The Interplay Among Knowledge, Cognitive Abilities and Thinking Styles in Probabilistic Reasoning: A Test of a Model

  • Francesca Chiesi
  • Caterina Primi
Part of the Advances in Mathematics Education book series (AME)

Abstract

Stanovich et al. (Adv. Child Dev. Behav. 36, 251–285, 2008) outlined how people can reach a correct solution when a task besides the normative solution elicits competing response options that are intuitively compelling. First of all, people have to possess the relevant rules, procedures, and strategies derived from past learning experiences, called mindware (Perkins, Outsmarting IQ: the emerging science of learnable intelligence, Free Press, New York, 1995). Then they have to recognise the need to use and to inhibit competing responses. Starting from this assumption, Stanovich and colleagues developed a taxonomy of thinking errors that builds on the dual-process theories of cognition.

The present chapter presents a set of experiments designed to test the Stanovich and colleagues’ model inside probabilistic reasoning. Since rules concerned with probabilistic reasoning (i.e. the mindware in Stanovich and colleagues’ terms) are learned and consolidated through education, we carried on the researches with students of different grade levels. In particular, we assessed the role of the mindware gap (i.e. missing knowledge), taking into account individual differences in cognitive ability and thinking dispositions, and superstitious thinking as contaminated mindware (Study 1). Then, we conducted a set of experiments (Study 2) in order to investigate the override failure (i.e. the failure in inhibiting intuitive competing responses) in which participants were instructed to reason on the basis of logic or provided with example of logical vs. intuitive solutions of the same task. In this way, we aimed at stressing the need to apply the rules.

Our results provide support for the claim that the mindware plays an important role in probabilistic reasoning independent of age. Moreover, we found that cognitive capacity increases reasoning performance only if individuals possess the necessary knowledge about normative rules. Finally, superstitious beliefs seem to have a detrimental effect on reasoning. The overall findings offer some cues to cross the bridge from a psychological approach to an educational approach.

Keywords

Heuristics and biases Dual-process theories Probabilistic reasoning Cognitive abilities Thinking disposition Primary students Secondary school students High school students College students Teaching probability 

References

  1. Afantiti-Lamprianou, T., & Williams, J. (2003). A scale for assessing probabilistic thinking and the representativeness tendency. Research in Mathematics Education, 5, 172–196. CrossRefGoogle Scholar
  2. Arthur, W., & Day, D. (1994). Development of a short form for the Raven Advanced Progressive Matrices test. Educational and Psychological Measurement, 54, 395–403. Google Scholar
  3. Batanero, C., Godino, J. D., Vallecillos, A., Green, D. R., & Holmes, P. (1994). Errors and difficulties in understanding elementary statistical concepts. International Journal of Mathematical Education in Science and Technology, 25, 527–547. CrossRefGoogle Scholar
  4. Brainerd, C. J., & Reyna, V. F. (2001). Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience. Advances in Child Development and Behavior, 28, 49–100. Google Scholar
  5. Chiesi, F., & Primi, C. (2009). Recency effects in primary-age children and college students using a gaming situation. International Electronic Journal of Mathematics Education, 4, 3. Special issue on “Research and development in probability education”. www.iejme.com. Google Scholar
  6. Chiesi, F., Donati, M., Papi, C., & Primi, C. (2010). Misurare il pensiero superstizioso nei bambini: validità e attendibilità della Superstitious Thinking Scale (Measuring superstitious thinking in children: validity and reliability of the superstitious thinking scale). Età Evolutiva, 97, 5–14. Google Scholar
  7. Chiesi, F., Primi, C., & Morsanyi, K. (2011). Developmental changes in probabilistic reasoning: the role of cognitive capacity, instructions, thinking styles and relevant knowledge. Thinking & Reasoning, 17, 315–350. CrossRefGoogle Scholar
  8. Chiesi, F., Ciancaleoni, M., Galli, S., Morsanyi, K., & Primi, C. (2012a). Item response theory analysis and differential item functioning across age, gender and country of a short form of the advanced progressive matrices. Learning and Individual Differences, 22, 390–396. doi: 10.1016/j.lindif.2011.12.007. CrossRefGoogle Scholar
  9. Chiesi, F., Ciancaleoni, M., Galli, S., & Primi, C. (2012b). Using the advanced progressive matrices (set I) to assess fluid ability in a short time frame: an item response theory-based analysis. Psychological Assessment, 24, 892–900. doi: 10.1037/a0027830. CrossRefGoogle Scholar
  10. Denes-Raj, V., & Epstein, S. (1994). Conflict between intuitive and rational processing: when people behave against their better judgment. Journal of Personality and Social Psychology, 66, 819–829. CrossRefGoogle Scholar
  11. De Neys, W., Schaeken, W., & d’Ydewalle, G. (2005). Working memory and everyday conditional reasoning: retrieval and inhibition of stored counterexamples. Thinking & Reasoning, 11, 349–381. CrossRefGoogle Scholar
  12. De Neys, W., Vartanian, O., & Goel, V. (2008). Smarter than we think: when our brains detect that we are biased. Psychological Science, 19, 483–489. CrossRefGoogle Scholar
  13. Epstein, S. (1994). An integration of the cognitive and psychodynamic unconscious. The American Psychologist, 49, 709–724. CrossRefGoogle Scholar
  14. Evans, J. St. B. T. (2006). The heuristic–analytic theory of reasoning: extension and evaluation. Psychological Bulletin, 13(3), 378–395. CrossRefGoogle Scholar
  15. Evans, J. St. B. T. (2003). In two minds: dual process accounts of reasoning. Trends in Cognitive Sciences, 7, 454–459. CrossRefGoogle Scholar
  16. Evans, J. St. B. T., & Over, D. E. (1996). Rationality and reasoning. Hove: Psychology Press. Google Scholar
  17. Evans, J. St. B. T., Handley, S. J., Neilens, H., & Over, D. E. (2009). The influence of cognitive ability and instructional set on causal conditional inference. Quarterly Journal of Experimental Psychology, 63, 892–909. Google Scholar
  18. Ferreira, M. B., Garcia-Marques, L., Sherman, S. J., & Sherman, J. W. (2006). Automatic and controlled components of judgment and decision making. Journal of Personality and Social Psychology, 91, 797–813. CrossRefGoogle Scholar
  19. Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for Research in Mathematics Education, 28(1), 96–105. CrossRefGoogle Scholar
  20. Green, D. R. (1982). Probability concepts in 11–16 year old pupils (2nd ed.). Loughborough: Centre for Advancement of Mathematical Education in Technology, College of Technology. Google Scholar
  21. Handley, S., Capon, A., Beveridge, M., Dennis, I., & Evans, J. St. B. T. (2004). Working memory, inhibitory control and the development of children’s reasoning. Thinking & Reasoning, 10, 175–195. CrossRefGoogle Scholar
  22. Hertwig, R., & Gigerenzer, G. (1999). The “conjunction fallacy” revised: how intelligent inferences look like reasoning errors. Journal of Behavioral Decision Making, 12, 275–305. CrossRefGoogle Scholar
  23. Jacobs, J. E., & Klaczynski, P. A. (2002). The development of decision making during childhood and adolescence. Current Directions in Psychological Science, 4, 145–149. CrossRefGoogle Scholar
  24. Kahneman, D., & Frederick, S. (2002). Representativeness revisited: attribute substitution in intuitive judgement. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and biases: the psychology of intuitive judgment (pp. 49–81). New York: Cambridge University Press. CrossRefGoogle Scholar
  25. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: heuristics and biases. New York: Cambridge University Press. CrossRefGoogle Scholar
  26. Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Bulletin, 80, 237–251. Google Scholar
  27. Kapadia, R., & Borovcnik, M. (1991). Chance encounters: probability in education. Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  28. Keren, G., & Schul, Y. (2009). Two is not always better than one: a critical evaluation of two-system theories. Perspectives on Psychological Science, 4, 533–550. CrossRefGoogle Scholar
  29. Kirkpatrick, L. A., & Epstein, S. (1992). Cognitive-experiential self-theory and subjective probability: further evidence for two conceptual systems. Journal of Personality and Social Psychology, 63, 534–544. CrossRefGoogle Scholar
  30. Klaczynski, P. A. (2001). Framing effects on adolescent task representations, analytic and heuristic processing, and decision making: implications for the normative/descriptive gap. Journal of Applied Developmental Psychology, 22, 289–309. CrossRefGoogle Scholar
  31. Klaczynski, P. A. (2004). A dual-process model of adolescent development: implications for decision making, reasoning, and identity. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 31, pp. 73–123). San Diego: Academic Press. Google Scholar
  32. Klaczynski, P. A. (2009). Cognitive and social cognitive development: dual-process research and theory. In J. B. St. T. Evans & K. Frankish (Eds.), In two minds: dual processing and beyond (pp. 265–292). Oxford: Oxford University Press. CrossRefGoogle Scholar
  33. Kokis, J. V., MacPherson, R., Toplak, M. E., West, R. F., & Stanovich, K. E. (2002). Heuristic and analytic processing: age trends and associations with cognitive ability and cognitive styles. Journal of Experimental Child Psychology, 83, 26–52. CrossRefGoogle Scholar
  34. Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6, 59–98. CrossRefGoogle Scholar
  35. Konold, C. (1995). Issues in Assessing Conceptual Understanding in Probability and Statistics. Journal of Statistics Education, 3(1). Retrieved from http://www.amstat.org/publications/jse/v3n1/konold.html, May 25, 2009.
  36. Lehman, D. R., Lempert, R. O., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: formal discipline and thinking about everyday-life events. The American Psychologist, 43, 431–442. CrossRefGoogle Scholar
  37. Morsanyi, K., & Handley, S. J. (2008). How smart do you need to be to get it wrong? The role of cognitive capacity in the development of heuristic-based judgment. Journal of Experimental Child Psychology, 99, 18–36. CrossRefGoogle Scholar
  38. Morsanyi, K., Primi, C., Chiesi, F., & Handley, S. (2009). The effects and side-effects of statistics education. Psychology students’ (mis-)conceptions of probability. Contemporary Educational Psychology, 34, 210–220. CrossRefGoogle Scholar
  39. Osman, M., & Stavy, R. (2006). Intuitive rules: from formative to developed reasoning. Psychonomic Bulletin & Review, 13, 935–953. CrossRefGoogle Scholar
  40. Perkins, D. N. (1995). Outsmarting IQ: the emerging science of learnable intelligence. New York: Free Press. Google Scholar
  41. Primi, C., & Chiesi, F. (2011). The role of relevant knowledge and cognitive ability in gambler fallacy. In The 7th congress of the European Society for Research in Mathematics Education, Rzeszów, Poland. http://www.cerme7.univ.rzeszow.pl/WG/5/CERME_Primi-Chiesi.pdf. Google Scholar
  42. Raven, J. C. (1941). Standardization of progressive matrices. British Journal of Medical Psychology, 19, 137–150. CrossRefGoogle Scholar
  43. Raven, J. C. (1962). Advanced progressive matrices. London: Lewis & Co. Ltd. Google Scholar
  44. Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision-making: implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7, 1–44. Google Scholar
  45. Shaughnessy, J. M. (1992). Research in probability and statistics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York: MacMillan. Google Scholar
  46. Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah: Erlbaum. Google Scholar
  47. Stanovich, K. E., & West, R. F. (1999). Discrepancies between normative and descriptive models of decision making and the understanding acceptance principle. Cognitive Psychology, 38, 349–385. CrossRefGoogle Scholar
  48. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: implications for the rationality debate. Behavioral and Brain Sciences, 23, 645–726. CrossRefGoogle Scholar
  49. Stanovich, K. E., & West, R. F. (2003). Evolutionary versus instrumental goals: how evolutionary psychology misconceives human rationality. In D. E. Over (Ed.), Evolution and the psychology of thinking (pp. 171–230). Hove: Psychology Press. Google Scholar
  50. Stanovich, K. E., & West, R. F. (2008). On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology, 94, 672–695. CrossRefGoogle Scholar
  51. Stanovich, K. E., Toplak, M. E., & West, R. F. (2008). The development of rational thought: a taxonomy of heuristics and biases. Advances in Child Development and Behavior, 36, 251–285. CrossRefGoogle Scholar
  52. Thompson, V. A. (2009). Dual process theories: a metacognitive perspective. In J. Evans & K. Frankish (Eds.), Two minds: dual processes and beyond. London: Oxford University Press. Google Scholar
  53. Toplak, M., Liu, E., Macpherson, R., Toneatto, T., & Stanovich, K. E. (2007). The reasoning skills and thinking dispositions of problem gamblers: a dual-process taxonomy. Journal of Behavioral Decision Making, 20, 103–124. CrossRefGoogle Scholar
  54. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185, 1124–1131. CrossRefGoogle Scholar
  55. Tversky, A., & Kahneman, D. (1983). Extentional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychological Bulletin, 90, 293–315. Google Scholar
  56. West, R. F., Toplak, M. E., & Stanovich, K. E. (2008). Heuristics and biases as measures of critical thinking: associations with cognitive ability and thinking dispositions. Journal of Educational Psychology, 100, 930–941. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Neuroscience, Psychology, Drug Research, and Child’s Health (NEUROFARBA), Section of PsychologyUniversity of FlorenceFlorenceItaly

Personalised recommendations