Modular Spider Silk Fibers: Defining New Modules and Optimizing Fiber Properties

  • Michael B. Hinman
  • Florence Teulé
  • David Perry
  • Bo An
  • Sherry Adrianos
  • Amy Albertson
  • Randy Lewis
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 5)

Abstract

Orb-web weaving spiders use multiple silk fibers to accomplish different tasks, combining repetitive peptide modules to produce different properties in each fiber. Each fiber is the product of a distinct gland, but is subject to a common spinning paradigm to produce an insoluble fiber from an aqueous-soluble protein dope. We start by presenting the cloning of the last of the six silks used by Nephila clavipes, the piriform silk spidroin. This piriform fiber presents a unique set of protein modules, which are used to attach other silk fibers to surfaces and to each other. Fiber spinning studies using major ampullate, minor ampullate, and flagelliform modules responsible for distinct secondary structures and therefore fiber properties will be presented. The properties of various synthetic fibers such as the initial (Young’s) modulus, tensile strength at break, strain at break, and toughness will be presented for a N. clavipes flagelliform/major ampullate hybrid synthetic fiber series, and an Argiope aurantia flagelliform/major ampullate hybrid synthetic fiber. Then, an N. clavipes major ampullate protein 1 synthetic fiber will be compared to itself in terms of how the fiber reacts to a post-spin draw in terms of properties and secondary structure. Finally, two flagelliform/major ampullate hybrid fibers made from slightly different elastic modules will be compared to show how minor changes in a single peptide module can change artificial spinning parameters substantially. Post-spin draw regimens on each fiber will demonstrate the importance of such procedures in optimizing fiber properties to take advantage of the modular protein sequences. Secondary structure studies at different stages of spinning will demonstrate the recruitment of secondary structures that greatly influence fiber properties.

Keywords

Piriform Structure-function Modular Post-spin X-ray 

References

  1. Adrianos S, Teule F, Hinman MB, Jones JA, Weber WS, Yarger JL, Lewis RV (2013) Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silks. Biomacromolecules 14:1751--1760Google Scholar
  2. Albertson A, Teule F, Weber W, Yarger J, Lewis RV (2013) manuscript submittedGoogle Scholar
  3. An B, Hinman MB, Holland GP, Yarger JL, Lewis RV (2011) Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules 12:2375–2381PubMedCrossRefGoogle Scholar
  4. Ayoub NA, Garb JE, Tinghitells RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514, 1–12PubMedCrossRefGoogle Scholar
  5. Blackledge TA, Swindeham JE, Hayashi CY (2005a) Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J Exp Biol 208:1937–1949PubMedCrossRefGoogle Scholar
  6. Blackledge TA, Summers AP, Hayashi CY (2005b) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108:41–46PubMedCrossRefGoogle Scholar
  7. Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu X, La Mattina C, Vierra C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284(42):29097–29108PubMedCrossRefGoogle Scholar
  8. Boutry C, Blackledge TA (2010) Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers. J Exp Biol 213:3505–3514PubMedCrossRefGoogle Scholar
  9. Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008) Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9:1506–1510PubMedCrossRefGoogle Scholar
  10. Challis RJ, Goodacre SL, Hewitt GM (2006) Evolution of spider silks: conservation and diversification of the C-terminus. Insect Mol Biol 15(1):45–56PubMedCrossRefGoogle Scholar
  11. Choresh O, Bayarmagnai B, Lewis RV (2009) Spider web glue: two proteins expressed form opposite strands of the same DNA sequence. Biomacromolecules 10:2852–2856PubMedCrossRefGoogle Scholar
  12. Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci 7:667–672PubMedCrossRefGoogle Scholar
  13. Gaines WA, Marcotte WR (2008) Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes. Insect Mol Biol 17(5):465–474PubMedCrossRefGoogle Scholar
  14. Gaines WA, Sehorn MG, Marcotte WR Jr (2010) Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J Biol Chem 285(52):40745–40753PubMedCrossRefGoogle Scholar
  15. Garb JE, Hayashi CY (2005) Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci U S A 102(32):11379–11384PubMedCrossRefGoogle Scholar
  16. Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243–258PubMedCrossRefGoogle Scholar
  17. Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605PubMedCrossRefGoogle Scholar
  18. Gosline JM, DeMont ME, Denny MW (1986) The structure and properties of spider silk. Endeavour 10:37–43CrossRefGoogle Scholar
  19. Grubb DT, Jelinski LW (1997) Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30:2860–2867CrossRefGoogle Scholar
  20. Guerette PA, Ginziger GG, Weber BHF, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272:112–115PubMedCrossRefGoogle Scholar
  21. Guerts P, Zhao L, Hsia Y, Gnesa E, Tang S, Jeffrey F, La Mattina C, Franz A, Larkin L, Vierra C (2010) Synthetic spider silk fibers spun from pyriform spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11:3495–3503CrossRefGoogle Scholar
  22. Hardy JG, Romer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327CrossRefGoogle Scholar
  23. Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784PubMedCrossRefGoogle Scholar
  24. Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479PubMedCrossRefGoogle Scholar
  25. Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275PubMedCrossRefGoogle Scholar
  26. Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterisation of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21(10):1950–1959PubMedCrossRefGoogle Scholar
  27. Hijirida DH, Do GK, Michal C, Wong S, Zax D, Jelinski LW (1996) 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J 71:3442–3447PubMedCrossRefGoogle Scholar
  28. Hinman M, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin. J Biol Chem 267:19320–19324PubMedGoogle Scholar
  29. Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18(9):374–379PubMedCrossRefGoogle Scholar
  30. Holland GP, Jenkins JE, Creager MS, Lewis RV, Yarger JL (2008) Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states. Biomacromolecules 9:651–657PubMedCrossRefGoogle Scholar
  31. Hu X, Kohler K, Falick AM, Moore AMF, Jones PR, Sparkman OS, Vierra C (2005a) Egg case protein 1. J Biol Chem 280(22):21220–21230PubMedCrossRefGoogle Scholar
  32. Hu X, Lawrence B, Kohler K, Falick AM, Moore AMF, MacMullen E, Jones PR, Vierra C (2005b) Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry 44:10020–10027PubMedCrossRefGoogle Scholar
  33. Hu X, Vasanthada K, Kohler K, McNary S, Moore AMF, Vierra CA (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63:1986–1999PubMedCrossRefGoogle Scholar
  34. Humerik M, Scheibel T, Smith A (2011) Spider silk: understanding the structure-function relationship of a natural fiber. Prog Mol Biol Transl Sci 103:131–165CrossRefGoogle Scholar
  35. Jelinski LW, Blye A, Liivak O, Michal C, La Verde G, Seidel A, Shah N, Yang Z (1999) Orientation, structure, wet-spinning, and molecular basis of supercontraction of spider dragline silk. Int J Biol Macromol 24:197–201PubMedCrossRefGoogle Scholar
  36. Jenkins JE, Creager MS, Lewis RV, Holland GP, Yarger JL (2010) Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11(1):192–200PubMedCrossRefGoogle Scholar
  37. Kovoor J, Zylberberg L (1980) Fine structural aspects of silk secretion in a spider (Araneus diadematus). I. Elaboration in the pyriform glands. Tissue Cell 12(3):547–556PubMedCrossRefGoogle Scholar
  38. Kovoor J, Zylberberg L (1982) Fine structural aspects of silk secretion in a spider (Araneus diadematus). II. Conduction in the pyriform glands. Tissue Cell 14(3):519–530PubMedCrossRefGoogle Scholar
  39. Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476PubMedCrossRefGoogle Scholar
  40. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774PubMedCrossRefGoogle Scholar
  41. Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7(4):400–406PubMedCrossRefGoogle Scholar
  42. Liivak O, Flores A, Lewis R, Jelinski LW (1997) Conformation of the polyalanine repeats in minor ampullate gland silk of the spider Nephila clavipes. Macromolecules 30:7127–7130CrossRefGoogle Scholar
  43. Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6:3152–3159PubMedCrossRefGoogle Scholar
  44. Osaki S (1999) Is the mechanical strength of spider’s drag-lines reasonable as a lifeline? Int J Biol Macromol 24:283–287PubMedCrossRefGoogle Scholar
  45. Perry DJ, Bittencourt D, Siltberg-Liberles J, Rech EL, Lewis RV (2010) Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11:3000–3006CrossRefGoogle Scholar
  46. Plaza GR, Corsini P, Marsano E, Perez-Rigueiro J, Biancotto L, Elices M, Riekel C, Agullo-Rueda F, Gallardo E, Calleja JM, Guinea GV (2009) Old silks endowed with new properties. Macromolecules 42:8977–8982CrossRefGoogle Scholar
  47. Rising A, Widhe M, Johansson J, Hedhammar M (2011) Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cell Mol Life Sci 68:169–184PubMedCrossRefGoogle Scholar
  48. Shao Z, Vollrath F, Yang Y, Thogersen HC (2003) Structure and behavior of regenerated spider silk. Macromolecules 36:1157–1161CrossRefGoogle Scholar
  49. Simmons A, Ray E, Jelinski LW (1994) Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27:5235–5237CrossRefGoogle Scholar
  50. Sponner A, Vater W, Rommerskitch W, Vollrath F, Unger E, Grosse F, Weisshart K (2005a) The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 338:897–902PubMedCrossRefGoogle Scholar
  51. Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005b) Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44:4727–4736PubMedCrossRefGoogle Scholar
  52. Teulé F, Furin WA, Cooper AR, Duncan JA, Lewis RV (2007) Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 42:8974–8985CrossRefGoogle Scholar
  53. Teulé F, Addison B, Cooper AR, Ayon J, Henning RW, Benmore CJ, Holland GP, Yarger JL, Lewis RV (2012) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97:418–431PubMedCrossRefGoogle Scholar
  54. Tian M, Lewis RV (2005) Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein. Biochemistry 44:8006–8012PubMedCrossRefGoogle Scholar
  55. Um IC, Ki CS, Kweon HY, Lee KG, Ihm DW, Park YH (2004) Wet spinning of silk polymer II. Effect of drawing on the structural characteristics and properties of filament. Int J Biol Macromol 34:107–119PubMedCrossRefGoogle Scholar
  56. van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci U S A 99(16):10266–10271PubMedCrossRefGoogle Scholar
  57. Vollrath F (1992) Spider webs and silk. Sci Am 266:70–76CrossRefGoogle Scholar
  58. Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Science 340:305–307Google Scholar
  59. Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548PubMedCrossRefGoogle Scholar
  60. Work RW (1985) Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae). J Exp Biol 118:379–404Google Scholar
  61. Xia X-X, Qian Z-G, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107(32):14059–14063PubMedCrossRefGoogle Scholar
  62. Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87:7120–7124PubMedCrossRefGoogle Scholar
  63. Zhao A, Zhao T, Sima Y, Zhang Y, Nakagaki K, Miao Y, Shiomi K, Kajiura Z, Nagata Y, Nakagaki M (2005) Unique molecular architecture of egg case silk protein in a spider, Nephila clavipes. J Biochem 138:593–604PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael B. Hinman
    • 1
  • Florence Teulé
    • 1
  • David Perry
    • 2
  • Bo An
    • 3
  • Sherry Adrianos
    • 2
  • Amy Albertson
    • 2
  • Randy Lewis
    • 1
  1. 1.Department of Biology, BioInnovations CenterUtah State UniversityLoganUSA
  2. 2.Department of Molecular BiologyUniversity of WyomingLaramieUSA
  3. 3.Department of Biomedical EngineeringTufts UniversityMedfordUSA

Personalised recommendations