Fractals and Multi-fractals in Turbulence

  • Bhimsen K. Shivamoggi
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 103)

Abstract

Turbulent flows refer to situations in which the flow properties at any point vary in a statistically random manner. Fourier analysis shows that wave fluctuations in a range of frequencies and wave numbers are present, the width of the range changing with certain flow parameters like the Reynolds number. (Attempts at characterizing turbulence structure are hampered by the complexity associated with strong nonlinear couplings over a wide range of scales. This situation is somewhat made simpler at high Reynolds numbers due to separation of scales in this limit.) The various component motions interact through the nonlinear terms in the equations of motion, and the observed properties of the turbulence are thought of as being the statistical result of such interactions.

Mathematically, the description of these interactions should center on invariant measures. Although, there is no rigorous theory about the existence of strictly invariant measures in turbulence, experimental observations strongly support the idea that turbulence at small scales organizes itself into a statistically stationary universal state. Apparently, as the Reynolds number of the flow becomes infinite, all the invariance properties of the Navier-Stokes equations, possibly broken by the mechanisms producing the turbulence, are recovered asymptotically at small scales in a statistical sense.

Keywords

Energy Dissipation Hausdorff Dimension Energy Dissipation Rate Inertial Range Singularity Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. L.C. Andrews, R.L. Phillips, B.K. Shivamoggi, J.K. Beck, M. Joshi, A statistical theory for the distribution of energy dissipation in intermittent turbulence. Phys. Fluids A 1, 999 (1989) CrossRefMATHGoogle Scholar
  2. F. Anselmet, E.J. Hopfinger, Y. Gagne, R.A. Antonia, High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63 (1984) CrossRefGoogle Scholar
  3. G.K. Batchelor, A.A. Townsend, The nature of turbulent motion at large wavenumbers. Proc. R. Soc. Lond. A 199, 238 (1949) CrossRefMATHGoogle Scholar
  4. F. Belin, J. Maurer, P. Tabeling, H. Willaime, Velocity gradient distributions in fully developed turbulence: an experimental study. Phys. Fluids 9, 3843 (1997) CrossRefGoogle Scholar
  5. R. Benzi, S. Ciliberto, C. Baudet, F. Massaili, R. Tripiccione, S. Succi, Extended self-similarity in turbulent flows. Phys. Rev. E 48, 29 (1993) CrossRefGoogle Scholar
  6. R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, On the multifractal nature of fully-developed turbulence. J. Phys. A 17, 3521 (1984) CrossRefMathSciNetGoogle Scholar
  7. M.E. Brachet, D.I. Meiron, S.A. Orszag, B.G. Nickel, R.H. Morf, U. Frisch, Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411 (1983) CrossRefMATHGoogle Scholar
  8. M.E. Brachet, M. Meneguzzi, A. Vincent, H. Politano, P.L. Sulem, Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows. Phys. Fluids A 4, 2845 (1992) CrossRefMATHGoogle Scholar
  9. S.S. Chen, G. Doolen, J.R. Herring, R.H. Kraichnan, S.A. Orszag, Z.S. She, Far dissipation range of turbulence. Phys. Rev. Lett. 70, 3051 (1993) CrossRefGoogle Scholar
  10. S. Douady, Y. Couder, M.E. Brachet, Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67, 983 (1991) CrossRefGoogle Scholar
  11. A. Esser, S. Grossmann, Nonperturbative renormalization group approach to turbulence. Eur. Phys. J. B 7, 467 (1999) CrossRefGoogle Scholar
  12. G. Eyink, N. Goldenfeld, Analogies between scaling in turbulence, field theory and critical phenomena. Phys. Rev. E 50, 4679 (1994) CrossRefMATHMathSciNetGoogle Scholar
  13. G. Falkovich, A. Fouxon, Anomalous scaling of a passive scalar in turbulence and in equilibrium. Phys. Rev. Lett. 94, 214502 (2005) CrossRefGoogle Scholar
  14. G. Falkovich, K. Zawadezki, M. Vergassola, Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913 (2001) CrossRefMATHGoogle Scholar
  15. M. Fisher, Scaling, universality and renormalization group theory, in Critical Phenomena, ed. by F.J.W. Hakne (Springer, Berlin, 1983) Google Scholar
  16. U. Frisch, Fully developed turbulence: where do we stand. Phys. Scr. T 9, 137 (1985) CrossRefGoogle Scholar
  17. U. Frisch, G. Parisi, On the singularity structure of fully-developed turbulence, in Turbulence and Predictability in Geophysics and Climate Dynamics, ed. by M. Ghil, R. Benzi, G. Parisi (North-Holland, Amsterdam, 1985), p. 84 Google Scholar
  18. U. Frisch, P.L. Sulem, M. Nelkin, A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719 (1978) CrossRefMATHGoogle Scholar
  19. U. Frisch, M. Vergassola, A prediction of the multifractal model: the intermediate dissipation range. Europhys. Lett. 14, 439 (1991) CrossRefGoogle Scholar
  20. C.H. Gibson, G.R. Stegen, S. McConnell, Measurements of the universal constant in Kolmogorov’s third hypothesis for high Reynolds number turbulence. Phys. Fluids 13, 2448 (1970) CrossRefGoogle Scholar
  21. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Proccacia, B.I. Shraiman, Fractal measures and their singularities: characterization of strange sets. Phys. Rev. A 33, 1141 (1986) CrossRefMATHMathSciNetGoogle Scholar
  22. H.G.E. Hentschel, I. Proccacia, The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435 (1983) CrossRefMATHMathSciNetGoogle Scholar
  23. P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977) CrossRefGoogle Scholar
  24. M.H. Jensen, G. Paladin, A. Vulpiani, Multiscaling in multifractals. Phys. Rev. Lett. 67, 208 (1991) CrossRefGoogle Scholar
  25. L. Kadanoff, Scaling laws for Ising models near T c. Physics 2, 263 (1966) Google Scholar
  26. L. Kadanoff, Scaling and universality in statistical physics. Physica A 163, 1 (1990) CrossRefMathSciNetGoogle Scholar
  27. R.M. Kerr, Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31 (1985) CrossRefMATHGoogle Scholar
  28. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid at very large Reynolds numbers. C. R. Acad. Sci. USSR 30, 299 (1941) Google Scholar
  29. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13, 82 (1962) CrossRefMATHMathSciNetGoogle Scholar
  30. R.H. Kraichnan, On Kolmogorov’s inertial range theories. J. Fluid Mech. 62, 305 (1974) CrossRefMATHMathSciNetGoogle Scholar
  31. L.D. Landau, Theory of phase transitions. Fiz. Sowjetunion 11, 26 (1937) MATHGoogle Scholar
  32. L.D. Landau, On the nature of turbulence. Sov. Phys. Dokl. 44, 139 (1944) MATHGoogle Scholar
  33. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Elmsford, 1987) MATHGoogle Scholar
  34. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331 (1974) CrossRefMATHGoogle Scholar
  35. B. Mandelbrot, Intermittent turbulence and fractal dimension: Kurtosis and the spectral exponent 5/3+B, in Turbulence and Navier-Stokes Equations, ed. by R. Temam. Lecture Notes in Mathematics, vol. 65 (Springer, Berlin, 1976), p. 121 CrossRefGoogle Scholar
  36. C. Meneveau, K.R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424 (1987) CrossRefGoogle Scholar
  37. C. Meneveau, K.R. Sreenivasan, The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429 (1991) CrossRefMATHGoogle Scholar
  38. M. Nelkin, Turbulence, critical fluctuations and intermittency. Phys. Rev. A 9, 388 (1974) CrossRefGoogle Scholar
  39. M. Nelkin, Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42, 7226 (1990) CrossRefGoogle Scholar
  40. E.A. Novikov, Intermittency and scale similarity in the structure of a turbulent flow. Prikl. Mat. Mech. 35, 266 (1971) Google Scholar
  41. A.M. Obukhov, Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77 (1962) CrossRefMathSciNetGoogle Scholar
  42. G. Paladin, A. Vulpiani, Degrees of freedom of turbulence. Phys. Rev. A 35, 1971 (1987) CrossRefGoogle Scholar
  43. L.F. Richardson, Weather Prediction by Numerical Processes (Cambridge University Press, Cambridge, 1922) Google Scholar
  44. B.K. Shivamoggi, Critical exponents and universality in fully developed turbulence. Chaos Solitons Fractals 32, 628 (2005) CrossRefMathSciNetGoogle Scholar
  45. K. Sreenivasan, On the scaling of turbulent energy dissipation rate. Phys. Fluids 27, 1048 (1984) CrossRefGoogle Scholar
  46. K. Sreenivasan, G. Stolovitzky, Turbulence cascades. J. Stat. Phys. 78, 311 (1995) CrossRefMATHGoogle Scholar
  47. H.E. Stanley, Scaling, universality and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S538 (1999) CrossRefGoogle Scholar
  48. R.W. Stewart, J.R. Wilson, R.W. Burling, Some statistical properties of small-scale turbulence in atmospheric boundary layer. J. Fluid Mech. 41, 141 (1970) CrossRefGoogle Scholar
  49. P. Tabeling, G. Zocchi, F. Belin, J. Maurer, H. Willaime, Probability density functions skewness and flatness in large Reynolds number turbulence. Phys. Rev. E 53, 1613 (1996) CrossRefGoogle Scholar
  50. H. Tennekes, J.C. Wyngaard, The intermittent small-scale structure of turbulence. J. Fluid Mech. 55, 93 (1972) CrossRefGoogle Scholar
  51. A.A. Townsend, The measurement of double and triple correlation derivatives in isotropic turbulence. Proc. Camb. Philos. Soc. 43, 560 (1947) CrossRefGoogle Scholar
  52. C.W. van Atta, R.A. Antonia, Reynolds-number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23, 252 (1980) CrossRefGoogle Scholar
  53. S.R.S. Varadhan, Large Deviations and Applications (Society for Industrial and Applied Mathematics Publications, Philadelphia, 1984) CrossRefGoogle Scholar
  54. A. Vincent, M. Meneguzzi, The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1 (1991) CrossRefMATHGoogle Scholar
  55. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975) CrossRefGoogle Scholar
  56. X.Z. Wu, L.P. Kadanoff, A. Libchaber, M. Sano, Frequency power spectrum of temperature and fluctuations in free convection. Phys. Rev. Lett. 64, 2140 (1990) CrossRefGoogle Scholar
  57. V. Yakhot, S. Orszag, Renormalization-group analysis of turbulence. Phys. Rev. Lett. 57, 1722 (1986) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bhimsen K. Shivamoggi
    • 1
  1. 1.Dept. MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations