Ecological Interactions of the Host-Insect System Quercus robur and Tortrix viridana

  • Hilke SchroederEmail author
  • Riziero Tiberi
Part of the Forestry Sciences book series (FOSC, volume 81)


The interaction between herbivorous insects and their host plants is a never-ending race related to evolutionary adaptation. Plants have developed an armament against herbivore attacks including indirect defences which besides others are comprised of volatile substances, as well as toxic secondary metabolites act directly against feeding herbivores. Insects, however, can rapidly evolve mechanisms to adapt to these compounds to prevent being harmed by them. Thus, herbivorous insects represent a fascinating feeding guild that are comprised of several arthropod groups, and especially the lepidopteran genera that feed on tree species. One of these lepidopteran species is the green oak leaf roller, Tortrix viridana L., a major pest on oaks throughout Europe. Its’ defoliating larvae use different species of the genus Quercus and cause severe damage to the oaks. Defoliation leads to decrease of wood formation and fructification, and to an increase of vulnerability to secondary pathogens (fungi, viruses and other insects). This tree-insect-system serve as a model system for a specialised herbivorous insect and its’ host plant from as well an ecological as a molecular point of view combined with modelling aspects.


Host Plant Herbivorous Insect Phytophagous Insect Postglacial Recolonisation Xylophagous Insect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott KC, Dwyer G (2007) Food limitation and insect outbreaks: complex dynamics in plant-herbivore models. J Anim Ecol 76:1004–1014PubMedGoogle Scholar
  2. Agrawal AA (1999) Induced responses to herbivory and increased plant performance. Science 279:1201–1202Google Scholar
  3. Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432Google Scholar
  4. Altenkirch W (1966) Zum Vorkommen von Tortrix viridana L. in Portugal. Zeits Zool 53:403–415Google Scholar
  5. Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321PubMedGoogle Scholar
  6. Baltensweiter W, Benz G, Bovey P, Delucchi V (1977) Dynamics of larch bud moth populations. Annu Rev Entomol 22:79–100Google Scholar
  7. Battisti A, Dell’Agnola G, Masutti L (1986) L’attività di thaumetopoea pityocampa (Denis et Schiffermüller) nel ciclo della sostanza organica in popolamenti artificiali di Pinus nigra Arnold. Frustula Entomologica 7–8:507–520Google Scholar
  8. Beckerman AP, Benton TG, Lapsley CT, Koesters N (2006) How effective are maternal effects at having effects? Proc Roy Soc Lond B 273:485–493Google Scholar
  9. Benton TG, Plaistow SJ, Beckerman AP, Lapsley CT, Littlejohns S (2005) Changes in maternal investment in eggs can affect population dynamics. Proc Roy Soc Lond B 272:1351–1356Google Scholar
  10. Benz G (1974) Negative Rückkoppelung durch Raum - und Nahrungskonkurrenz sowie zyklische Veränderung der Nahrungsgrundlage als Regelprinzip in der Populationsdynamik des Grauen Lärchenwicklers, Zeiraphera diniana (Guénée). Z Angew Entomol 76:196–228Google Scholar
  11. Bernays EA (1998) Evolution of feeding behaviour in insect herbivores. Bioscience 48:35–44Google Scholar
  12. Bernetti G (1995) Selvicoltura speciale. Utet, Turin, 415 ppGoogle Scholar
  13. Berryman AA (1996) What causes population cycles of Lepidoptera? Trends Ecol Evol 11:28–32PubMedGoogle Scholar
  14. Betts MM (1955) The food of titmice in oak woodland. J Anim Ecol 24:282–323Google Scholar
  15. Bjørnstad ON, Robinet C, Liebhold AM (2010) Geographic variation in North American gypsy moth cycles: subharmonics, generalist predators, and spatial coupling. Ecology 91:106–118PubMedGoogle Scholar
  16. Bogenschütz H (1978) Tortricinae. In: Schwenke W (ed) Die Forstschädlinge Europas. Band III. Paul Parey, Hamburg und Berlin, pp 55–89Google Scholar
  17. Boland W, Hopke J, Donath J et al (1995) Jasmonsäure- und Coronatin-induzierte Duftproduktion von Pflanzen. Angew Chem 107:1715–1717Google Scholar
  18. Bovey P (1970) Impact de l'insecte déprédateur sur la forêt. Rev. for. fran., 12, n.spec., "La lutte biologique en forêt": 199–204Google Scholar
  19. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry 72:1605–1611PubMedGoogle Scholar
  20. Cambini A (1971) Valutazione dei danni causati dagli insetti defogliatori alla quercia da sughero. In: Atti del 1° Convegno Regionale del Sughero, Tempio Pausania, 14–16 Ottobre 1971: 327–339Google Scholar
  21. Campbell RW, Sloan RJ (1978) Natural maintenance and decline of gypsy moth outbreaks. Environ Entomol 7:389–395Google Scholar
  22. Carlisle A, Brown AHF, White EJ (1966) Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak woodland. J Ecol 54(1):65–85Google Scholar
  23. Cha DH, Linn CE Jr, Teal PEA, Zhang A, Roelofs WL, Loeb GM (2011) Eavesdropping on plant volatiles by a specialist moth: significance of ratio and concentration. PLoS One 6:e17033. doi: 10.1371/journal.pone.0017033 PubMedGoogle Scholar
  24. Chitty D (1960) Population processes in the vole and their relevance to general theory. Can J Zool 38:99–113Google Scholar
  25. Covassi M (1989) Gli insetti e l’alterata dinamica degli ecosistemi di foresta. Criteri per il riassetto delle entomocenosi. In: Atti del Convegno sulle Avversità del bosco e delle specie arboree da legno, Firenze 15–16 ott. 1987: 405–447Google Scholar
  26. Covassi M, Tiberi R (1994) Interventi integrati di controllo dei fitofagi forestali. – In: Atti XVII Congresso Nazionale Italiano di Entomologia, Udine 13–18 Giugno 1994: 723–738Google Scholar
  27. Crawley MJ (1985) Reduction of oak fecundity by low-density herbivore populations. Nature 314(14):163–164Google Scholar
  28. Dahlsten DL, Dreistadt SH (1984) Forest insect pest management. Bull Entomol Soc Am 30(4):19–21Google Scholar
  29. Dajoz R (1980) Écologie des insectes forestiers. Bordas, Paris, 1980, ed. Gauthier-Villars: XI-489Google Scholar
  30. Denman S, Webber J (2009) Oak declines: new definitions and new episodes in Britain. Q J Forest 103:285–290Google Scholar
  31. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175PubMedGoogle Scholar
  32. Dobler S, Farrell BD (1999) Host use evolution in Chrysochus milkweed beetles: evidence from behaviour, population genetics and phylogeny. Mol Ecol 8:1297–1307PubMedGoogle Scholar
  33. Du Merle P (1983) Phénologies comparées du chêne pubescent, du chêne vert et de Tortrix viridana L. (Lep., Tortricidae). Mise in évidence chez l’insecte de deux popolations sympatriques adaptées chacune a’ l’un des chênes. Acta aecol Oecol Applic 4(1):55–74Google Scholar
  34. Du Merle P, Mazet R (1983) Stades phénologiques et infestation par Tortrix viridana L. (Lep., Tortricidae) des bourgerons du chêne pubescent et du chêne vert. –. Acta aecol Oecol Applic 4(1):47–53Google Scholar
  35. Du Merle P (1985a) Piégeage sexuel de Tortrix viridana L. (Lep., Tortricidae) en montagne méditerranéenne. I. Epoque de vol et dispersion des adultes. Z Angew Entomol 100:146–163Google Scholar
  36. Du Merle P (1985b) Piégeage sexuel de Tortrix viridana L. (Lep., Tortricidae) en montagne méditerranéenne. II. Relation entre le nombre des captures et le niveau de popolation. Rendement des piéges. Z Angew Entomol 100:272–289Google Scholar
  37. Du Merle P (1999) Egg development and diapause: ecophysiological and genetic basis of phenological polymorphism and adaptation to varied hosts in the green oak tortrix, Tortrix viridana L. Lepidoptera: Tortricidae. J Insect Physiol 45:599–611PubMedGoogle Scholar
  38. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256PubMedGoogle Scholar
  39. Dumolin-Lapegue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487PubMedGoogle Scholar
  40. Dwyer G, Dushoff J, Elkinton JS, Levin SA (2000) Pathogen-driven outbreaks in forest defoliators revisited: building models from experimental data. Am Nat 156:105–120PubMedGoogle Scholar
  41. Dwyer G, Dushoff J, Harrell Yee S (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430:341–345PubMedGoogle Scholar
  42. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in co-evolution. Evolution 18:586–608Google Scholar
  43. Elkinton JS, Liebhold AM, Muzika R-M (2004) Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul Ecol 46:171–178Google Scholar
  44. Elton CS (1924) Periodic fluctuations in the numbers of animals: their causes and effects. J Exp Biol 2:119–163Google Scholar
  45. Erelli MC, Elkinton JS (2000) Maternal effects on gypsy moth (Lepidoptera: Lymantriidae) population dynamics: a field experiment. Environ Entomol 29:476–488Google Scholar
  46. Erler E (1939) Beobachtungen zur Ökologie und Bekämpfung des Eichenwicklers (Tortrix viridana L.) in Westfalen. Anz Schädlingskunde 8:85–93Google Scholar
  47. Evans AC (1939) The utilization of food by the larvae of the buff-tip, Phalera bucephala L. Proc R Entomol Soc Lond (A) 14:25–30Google Scholar
  48. Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581Google Scholar
  49. Feeny P (1976) Plant apparency and chemical defense. Rec Adv Phytochem 10:1–40Google Scholar
  50. Fischer HM, Wheat CW, Heckel DG, Vogel H (2008) Evolutionary origin of a novel host plant detoxification gene in butterflies. Mol Biol Evol 25:809–820PubMedGoogle Scholar
  51. Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited : condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol Entomol 29:174–187Google Scholar
  52. Frago E, Pujade-Villar J, Guara M, Selfa J (2011) Providing insides into browntail moth local outbreaks by combining life table data and semi-parametric statistics. Ecol Entomol 36:188–199Google Scholar
  53. Gasow H (1925) Der grüne Eichenwickler (Tortrix viridana Linné) als Forstschädling. Arb Biol Reichsanstalt 12:355–508Google Scholar
  54. Ghilarov MS (1971) Invertebrates which destroy the forest litter and ways to increase their activity. In: Productivity of forest ecosystems, UNESCO, Proceedings, Brussels Symposium, 1969, pp 433–442Google Scholar
  55. Ghirardo A, Heller W , Fladung M, Schnitzler JP, Schroeder H (2012) Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana. Plant Cell Environ 35(12):2192–2207Google Scholar
  56. Ginzburg LR, Taneyhill DE (1994) Population cycles of forest Lepidoptera: a maternal effect hypothesis. J Anim Ecol 63:79–92Google Scholar
  57. Grison P (1973) Lutte intégrée en forêt. Phyt Phytopharm 22:229–248Google Scholar
  58. Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites. Proc Natl Acad Sci USA 87:3566–3573PubMedGoogle Scholar
  59. Hartmann G, Blank R (1992) Winterfrost, Kahlfraß und Prachtkäferbefall als Faktoren im Ursachenkomplex des Eichensterbens in Norddeutschland. Forst und Holz 15:443–452Google Scholar
  60. Haujioja E (1980) On the role of plant defenses in the fluctuation of herbivore populations. Oikos 35:202–213Google Scholar
  61. Haynes KJ, Liebhold AM, Johnson DM (2009) Spatial analyses of harmonic oscillation of gypsy moth outbreak intensity. Oecologia 159:249–256PubMedGoogle Scholar
  62. Högstedt G, Seldal T, Breistøl A (2005) Period length in cyclic animal populations. Ecology 86:373–378Google Scholar
  63. Horstmann K (1984) Untersuchungen zum Massenwechsel des Eichenwicklers, Tortrix viridana L. Lepidoptera: Tortricidae), in Unterfranken. Z Angew Entomol 98:73–95Google Scholar
  64. Hui D, Iqbal J, Lehmann K et al (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. V. Microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. Plant Physiol 131:1877–1893PubMedGoogle Scholar
  65. Hunter MD (1990) Differential susceptibility to variable plant fenology and its role in competition between two insect herbivores on oak. Ecol Entomol 15:401–408Google Scholar
  66. Hunter MD (2002) Maternal effects and the population dynamics of insects on plants. Agric For Entomol 4:1–9Google Scholar
  67. Hunter MD, Price PW (1998) Cycles in insect populations: delayed density dependence or exogenous driving variables? Ecol Entomol 23:216–222Google Scholar
  68. Hunter MD, Varley GC, Gradwell GR (1997) Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: a classic study revisited. Proc Natl Acad Sci USA 94:9176–9181PubMedGoogle Scholar
  69. Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator-prey view. Philos Trans R Soc B 364:1117–1124Google Scholar
  70. Ivashov AV, Boyko GE, Simchuk AP (2002) The role of host plant phenology in the development of the oak leaf roller moth, Tortrix viridana L. Lepidoptera: Tortricidae. Forest Ecol Manag 157:7–14Google Scholar
  71. Johnson DM, Liebhold AM, Bjørnstad ON (2006) Geographical variation in the periodicity of gypsy moth outbreaks. Ecography 29:367–374Google Scholar
  72. Jüttner O (1959) Ertragskundliche Untersuchungen in wicklergeschädigten Eichenbeständen. Forstarchiv 30:78–83Google Scholar
  73. Kamata N (2000) Population dynamics of the beech caterpillar, Syntypistis punctatella, and biotic and abiotic factors. Popul Ecol 42:267–278Google Scholar
  74. Kapeller S, Schroeder H, Schueler S (2011) Modelling the spatial population dynamics of the green oak leaf roller (Tortrix viridana) using density dependent competitive interactions: effects of herbivore mortality and varying host-plant quality. Ecol Model 222:1293–1302Google Scholar
  75. Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357Google Scholar
  76. Knipple DC, Rosenfiels C-L, Nielsen R, You KM, Jeong SE (2002) Evolution of the integral membrane desaturase gene family in moths and flies. Genetics 162:1737–1752PubMedGoogle Scholar
  77. König AO, Ziegenhagen B, van Dam BC et al (2002) Chloroplast DNA variation of oaks in western Central Europe and genetic consequences of human influences. Forest Ecol Manag 156:147–166Google Scholar
  78. Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM, Dale MRT, Martin K, Turkington R (1995) Impact of food and predation on the snowshoe hare cycle. Science 269:1112–1115PubMedGoogle Scholar
  79. Kudler J (1978) Geometroidea. In: Schwenke W (ed) Die Forstschädlinge Europas. Band III. Paul Parey, Hamburg und Berlin, pp 218–263Google Scholar
  80. Luciano P, Roversi PF (2001) Oak defoliators in Italy. Edizioni Poddinghe, Sassari, p 161Google Scholar
  81. Magnoler A, Cambini A (1968a) Accrescimento radiale della quercia da sughero ed effetti delle defogliazioni causate da larve di Lymantria dispar L. e di Malacosoma neustria L. I. Indagini su piante non decorticate. Mem. Staz. Sper. Sughero Tempio Pausania 27:1–6Google Scholar
  82. Magnoler A, Cambini A (1968b) Accrescimento radiale della quercia da sughero ed effetti delle defogliazioni causate da larve di Lymantria dispar L. e di Malacosoma neustria L. II. Indagini su piante in produzione. Mem. Staz. Sper. Sughero Tempio Pausania 28:1–16Google Scholar
  83. McCullough DG (2000) A review of factors affecting the population dynamics of jack pine budworm (Choristoneura pinus pinus Freeman). Popul Ecol 42:243–256Google Scholar
  84. Myers JH (2000) Population fluctuations of the western tent caterpillar in southwestern British Columbia. Popul Ecol 42:231–241Google Scholar
  85. Myers JH, Boettner G, Elkinton J (1998) Maternal effects in gypsy moth: only sex ratio varies with population density. Ecology 79:305–314Google Scholar
  86. Nedorezov LV, Sadykova DL (2008) Green oak leaf roller moth dynamics: an application of discrete time mathematical models. Ecol Model 212:162–170Google Scholar
  87. Petit RJ, Csaikl UM, Bordács S et al (2002) Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecol Manag 156:5–26Google Scholar
  88. Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641Google Scholar
  89. Pitman RM, Vanguelova EI, Benham SE (2010) The effects of phytophagous insects on water and soil nutrient concentrations and fluxes through forest stands of the Level II monitoring network in the UK. Sci Total Environ 409:169–181PubMedGoogle Scholar
  90. Plaistow SJ, Benton TG (2009) The influence of context-dependent maternal effects on population dynamics: an experimental test. Philos Trans R Soc B 364:1049–1058Google Scholar
  91. Poelman EH, Broekgaarden C, van Loon JJA, Dicke M (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365PubMedGoogle Scholar
  92. Ragazzi A, Tiberi R (2011) Interazioni insetti fitofagi-funghi patogeni delle specie arboree ornamentali. In: Convegno “Gestione delle emergenze parassitarie nel verde urbano e periurbano”. Grugliasco (TO), 24 febbraio 2011. Arbor 30: 7–11Google Scholar
  93. Reymond P (2001) DNA microarrays and plant defence. Plant Physiol Biochem 39:313–321Google Scholar
  94. Reymond P, Bodenhausen N, Van Poecke RMP et al (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147PubMedGoogle Scholar
  95. Reynolds JD, Freckleton RP (2005) Population dynamics: growing to extreme. Science 309:567–568PubMedGoogle Scholar
  96. Röhrig E (1950) Geographische Verbreitung und Schadgebiete des Eichenwicklers. Allg Forstz 51:554–555Google Scholar
  97. Rondan Duenas JC, Panzetti-Dutari GM, Blanco A, Gardenal CN (2002) Restriction fragment length polymorphism of the mtDNA A+T rich region as a genetic marker in Aedes aegypti. Diptera: culicidae. Ann Entomol Soc Am 95:352–358Google Scholar
  98. Rossiter MC (1991) Environmentally-based maternal effects: a hidden force in insect population dynamics? Oecologia 87:288–294Google Scholar
  99. Roversi PF, Tiberi R, Bin F (1991) I parassitoidi oofagi dei principali lepidotteri defogliatori del gen. Quercus in Italia. In: Aspetti fitopatologici delle Querce, Atti del Convegno. Problematiche fitopatologiche del gen. Quercus in Italia., Firenze, 19–20 nov. 1990: 316–330Google Scholar
  100. Royama T (1992) Analytical population dynamics. Chapman & Hall, LondonGoogle Scholar
  101. Schneider D (1992) 100 years of pheromone research. Naturwissenschaften 79:241–250Google Scholar
  102. Schroeder H, Degen B (2008a) Genetic structure of the green oak leaf roller (Tortrix viridana L.) and one of its hosts, Quercus robur L. Forest Ecol Manag 256:1270–1279Google Scholar
  103. Schroeder H, Degen B (2008b) Spatial genetic structure in populations of the green oak leaf roller Tortrix viridana L. (Lepidoptera, Tortricidae). Eur J Forest Res 127:447–453Google Scholar
  104. Schroeder H, Ghirardo A, Schnitzler JP, Fladung M (2011) Tree-insect interaction – defence response against herbivorous insects. BMC Proc 5(Suppl 7):P101Google Scholar
  105. Schroeder H, Scholz F (2005) Identification of PCR-RFLP haplotypes for assessing genetic variation in the green oak leaf roller Tortrix viridana L. (Lepidoptera, Tortricidae). Silvae Genet 54(1):17–24Google Scholar
  106. Schroeder H, Yanbaev Y, Degen B (2010) A very small and isolated population of the green oak leaf roller, Tortrix viridana L., with high genetic diversity – How does this work? J Hered 101(6):780–783PubMedGoogle Scholar
  107. Schröder H, Ziegler C (2006) Die Situation der Eiche in NRW im Frühjahr 2005. AFZ-Der Wald 6:320–321Google Scholar
  108. Schueler S, Schlünzen KH, Scholz F (2005) Viability of oak pollen and it’s implications for long distance gene flow. Trees 19:154–161Google Scholar
  109. Schwenke W (1978) Die Forstschädlinge Europas. Band III. Parey, Hamburg und Berlin, p 467Google Scholar
  110. Schwerdtfeger F (1961). Das Eichenwickler-Problem. Auftreten, Schaden, Massenwechsel und Möglichkeiten der Bekämpfung von Tortrix viridana L. in Nordwestdeutschland. Forsch. Berat. Landesaussch. landw. Forsch. Minist. Ernähr. Nordrh. Westf.(c) pt.: 1-174.Google Scholar
  111. Schwerdtfeger F (1971) Vergleichende Untersuchungen an der Kronenfauna der Eichen in Latenz- und Gradationsgebieten des Eichenwicklers (Tortrix viridana L.). 3. Die Bedeutung der Parasiten für den lokalen Fluktuationstyp des Eichenwicklers. Z Angew Entomol 67:296–304Google Scholar
  112. Selås V (2003) Moth outbreaks in relation to oak masting and population levels of small mammals: an alternative explanation to the mammal-predation hypothesis. Popul Ecol 45:157–159Google Scholar
  113. Selås V, Hogstad O, Kobro S, Rafoss T (2004) Can sunspot-activity and ultraviolet-B radiation explain cyclic outbreaks of forest moth pest species? Proc R Soc Lond B 271:1897–1901Google Scholar
  114. Simchuk AP, Ivashov AV, Companiytsev VA (1999) Genetic patterns as possible factors causing population cycles in oak leaf roller moth, Tortrix viridana L. Forest Ecol Manag 113:35–49Google Scholar
  115. Sinclair ARE, Chitty D, Stefan CI, Krebs CJ (2003) Mammal population cycles: evidence for intrinsic differences during snowshoe hare cycles. Can J Zool 81:216–220Google Scholar
  116. Sinervo B, Svensson E, Comendant T (2000) Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406:985–988PubMedGoogle Scholar
  117. Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27:1433–1440PubMedGoogle Scholar
  118. Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688Google Scholar
  119. Thomas FM (2008) Recent advances in cause-effect research on oak decline in Europe. CAB Rev Perspect Agric Vet Sci Nutr Nat Res 37:1–12Google Scholar
  120. Tiberi R, Roversi PF (1989) Osservazioni sull’impiego di trappole a feromone sessuale di Tortrix viridana L. in querceti della Toscana (Italia Centrale) (Lepidoptera, Tortricidae). Redia, LXXII(1): 277–290Google Scholar
  121. Tiberi R, Roversi PF (1990) Leaf roller moths on oak in Italy (Preliminary note). In: Oak decline in Europe. Proceedings of the international symposium, Kornik, Poland, 1518 May 1990, pp 343–347Google Scholar
  122. Tiberi R (1991). I lepidotteri defogliatori delle querce decidue: bioecologia e danni. In: Atti del Convegno, Aspetti fitopatologici delle Querce, Firenze 19-20 Novembre 1990: 239–250.Google Scholar
  123. Tiberi R, Prota R, Masutti L (1993) Esigenze, prospettive e proposte di nuovi criteri di intervento per il controllo dei lepidotteri defogliatori delle foreste. In: M.A.F. - Convegno “Piante forestali”, Firenze, 1992, (ed.) Ist. Sper. Pat. Veg., Roma: 19–34Google Scholar
  124. Tiberi R, Ragazzi A (1998) Association between fungi and xilophagous insects of declining oak in Italy.Redia LXXXI:83–91Google Scholar
  125. Tiberi R, Benassai D, Niccoli A (2005a) Influence of different host plants on the biology and behaviour of the green oak leaf roller, Tortrix viridana L.: first results. Integrated Protection in Oak Forest. IOBC/WPRS Bull 28(8):211–217Google Scholar
  126. Tiberi R, Benassai D, Niccoli A (2005b) Influenza della pianta ospite sulla biologia e comportamento della tortrice della quercia, Tortrix viridana L. - Linea Ecologica, XXXVII (6): 42–46Google Scholar
  127. Tiberi R, Bracalini M, Panzavolta T (2009) I dinamismi entmologici in boschi gestiti, non gestiti e percorsi dal fuoco. In proceedings of congress Getione sostenibile dei boschi in area mediterranea. Monte S. Angelo, 9th–10th Oct 2008, pp 41–49Google Scholar
  128. Turchin P (2003) Complex population dynamics. Princeton University Press, PrincetonGoogle Scholar
  129. Van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55PubMedGoogle Scholar
  130. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216PubMedGoogle Scholar
  131. Waters WE (1969) The life table approach to analysis of insect impact. J Forest 67(5):300–304Google Scholar
  132. Waters WE, Stark RW (1980) Forest pest management: concept and reality. Annu Rev Entomol 25:479–509Google Scholar
  133. Yela JL, Lawton JH (1997) Insect herbivore loads on native and introduced plants: a preliminary study. Entomol Exp Appl 85:275–279Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Thünen Institute of Forest GeneticsGrosshansdorfGermany
  2. 2.Agro-Biotechnology and Plant Protection DepartmentUniversity of FlorenceFlorenceItaly

Personalised recommendations