An Introduction to Brain Tumor Imaging

  • Amit Mehndiratta
  • Yee Kai Tee
  • Stephen J. Payne
  • Michael A. Chappell
  • Frederik L. Giesel
Part of the Tumors of the Central Nervous System book series (TCNS, volume 11)


Brain tumors are among the leading causes of tumor-related deaths globally; hence considerable research effort is being expended to improve the patient outcome. There are now multiple imaging techniques available for the diagnosis and management of brain tumors in clinical practice, as well as different contrast agents. All these coupled with amino acid tracers newly available in positron emission tomography can offer more accurate tumor diagnosis. The evaluation of tumors using multiple imaging modalities is now one of the trends in neuroradiology, where computed tomography (CT), magnetic resonance imaging (MRI) and molecular imaging all play a vital role in the brain tumor assessment.

In this chapter, we will cover the clinical applications of computed tomography, magnetic resonance imaging with and without gadolinium contrast agents including perfusion weighted imaging, amide proton transfer imaging and magnetic resonance spectroscopy, and positron emission tomography (PET) for the evaluation of brain tumors. The advantages and limitations of each modality, as well as how they perform with respect to certain specific clinical questions.


  1. Basu S, Alavi A (2009) Molecular imaging (PET) of brain tumors. Neuroimaging Clin N Am 19(4):625–646PubMedCrossRefGoogle Scholar
  2. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 188(2):586–592PubMedCrossRefGoogle Scholar
  3. Castillo M, Kwock L, Mukherji SK (1996) Clinical applications of proton MR spectroscopy. AJR Am J Roentgenol 17(1):1–15Google Scholar
  4. Colosimo C, Ruscalleda J, Korves M, La Ferla R, Wool C, Pianezzola P, Kirchin MA (2001) Detection of intracranial metastases: a multicenter, intrapatient comparison of gadobenate dimeglumine-enhanced MRI with routinely used contrast agents at equal dosage. Invest Radiol 36(2):72–81PubMedCrossRefGoogle Scholar
  5. Colosimo C, Knopp MV, Barreau X, Gérardin E, Kirchin MA, Guézénoc F, Lodemann KP (2004) A comparison of Gd-BOPTA and Gd-DOTA for contrast-enhanced MRI of intracranial tumours. Neuroradiology 46(8):655–665PubMedCrossRefGoogle Scholar
  6. Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, Carey RG (1990) Gliomas: classification with MR imaging. Radiology 174(2):411–415PubMedGoogle Scholar
  7. Donahue MJ, Blakeley JO, Zhou J, Pomper MG, Laterra J, van Zijl PCM (2008) Evaluation of human brain tumor heterogeneity using multiple T1-based MRI signal weighting approaches. Magn Reson Med 59(2):336–344PubMedCentralPubMedCrossRefGoogle Scholar
  8. Essig M (2003) Clinical experience with MultiHance in CNS imaging. Eur Radiol 13(Suppl 3):N3–N10PubMedCrossRefGoogle Scholar
  9. Essig M, Lodemann K-P, Le-Huu M, Brüning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadobenate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41(3):256–263PubMedCrossRefGoogle Scholar
  10. Giesel FL, Mehndiratta A, Risse F, Rius M, Zechmann CM, von Tengg-Kobligk H, Gerigk L, Kauczor HU, Politi M, Essig M, Griffiths PD, Wilkinson ID (2009) Intraindividual comparison between gadopentetate dimeglumine and gadobutrol for magnetic resonance perfusion in normal brain and intracranial tumors at 3 Tesla. Acta Radiol 50(5):521–530PubMedCrossRefGoogle Scholar
  11. Giesel FL, Mehndiratta A, Essig M (2010) High-relaxivity contrast-enhanced magnetic resonance neuroimaging: a review. Eur Radiol 20(10):2461–2474PubMedCrossRefGoogle Scholar
  12. Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16(3):123–131PubMedCrossRefGoogle Scholar
  13. Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Wilkins P, Opstad KS, Doyle VL, McLean MA, Bell BA, Griffiths JR (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232PubMedCrossRefGoogle Scholar
  14. Kandel EI, Schavinsky YV (1972) Stereotaxic apparatus and operations in Russia in the 19th century. J Neurosurg 37(4):407–411PubMedCrossRefGoogle Scholar
  15. Kuhn MJ, Picozzi P, Maldjian JA, Schmalfuss IM, Maravilla KR, Bowen BC, Wippold FJ, Runge VM, Knopp MV, Wolansky LJ, Gustafsson L, Essig M, Anzalone N (2007) Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention. J Neurosurg 106(4):557–566PubMedCrossRefGoogle Scholar
  16. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222(3):715–721PubMedCrossRefGoogle Scholar
  17. Maravilla KR, Maldjian JA, Schmalfuss IM, Kuhn MJ, Bowen BC, Wippold FJ, Runge VM, Knopp MV, Kremer S (2006) Contrast enhancement of central nervous system lesions: multicenter intraindividual crossover comparative study of two MR contrast agents. Radiology 240(2):389–400PubMedCrossRefGoogle Scholar
  18. Mehndiratta A, Giesel FL (2011) Brain tumor imaging. In: Abujamra AL (ed) Diagnostic techniques and surgical management of brain tumors. InTech, ISBN 978-953-307-589-1Google Scholar
  19. Mehndiratta A, Kapal JM, Prabu A (2011) Iodine mapping in brain tumor imaging using dual-energy computed tomography. Med Hypotheses 76(5):764PubMedCrossRefGoogle Scholar
  20. Pauleit D, Zimmermann A, Stoffels G, Bauer D, Risse J, Flüss MO, Hamacher K, Coenen HH, Langen KJ (2006) 18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. J Nucl Med 47(2):256–261PubMedGoogle Scholar
  21. Pooley RA (2005) AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics 25(4):1087–1099PubMedCrossRefGoogle Scholar
  22. Rowley HA, Scialfa G, Gao PY, Maldjian JA, Hassell D, Kuhn MJ, Wippold FJ, Gallucci MB, Bowen BC, Schmalfuss IM, Ruscalleda J, Bastianello S, Colosimo C (2008) Contrast-enhanced MR imaging of brain lesions: a large-scale intraindividual crossover comparison of gadobenate dimeglumine versus gadodiamide. AJNR Am J Neuroradiol 29(9):1684–1691PubMedCrossRefGoogle Scholar
  23. Rumboldt Z, Rowley HA, Steinberg F, Maldjian JA, Ruscalleda J, Gustafsson L, Bastianello S (2009) Multicenter, double-blind, randomized, intra-individual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine in MRI of brain tumors at 3 tesla. J Magn Reson Imaging 29(4):760–767PubMedCentralPubMedCrossRefGoogle Scholar
  24. Shino A, Nakasu S, Matsuda M, Handa J, Morikawa S, Inubushi T (1999) Noninvasive evaluation of the malignant potential of intracranial meningiomas performed using proton magnetic resonance spectroscopy. J Neurosurg 91(6):928–934PubMedCrossRefGoogle Scholar
  25. Sze G, Johnson C, Kawamura Y, Goldberg SN, Lange R, Friedland RJ, Wolf RJ (1998) Comparison of single- and triple-dose contrast material in the MR screening of brain metastases. AJNR Am J Neuroradiol 19(5):821–828PubMedGoogle Scholar
  26. Usenius JP, Kauppinen RA, Vainio PA, Hernesniemi JA, Vapalahti MP, Paljärvi LA, Soimakallio S (1994) Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr 18(5):705–713PubMedCrossRefGoogle Scholar
  27. van Zijl PCM, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948PubMedCentralPubMedCrossRefGoogle Scholar
  28. Wen Z, Hu S, Huang F, Wang X, Guo L, Quan X, Wang S, Zhou J (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 51(2):616–622PubMedCentralPubMedCrossRefGoogle Scholar
  29. Zhou J, Blakeley JO, Hua J, Kim M, Laterra J, Pomper MG, Van Zijl PCM (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60(4):842–849, Prometheus BooksPubMedCentralPubMedCrossRefGoogle Scholar
  30. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PCM (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Amit Mehndiratta
    • 1
  • Yee Kai Tee
    • 2
  • Stephen J. Payne
    • 3
  • Michael A. Chappell
    • 3
  • Frederik L. Giesel
    • 4
  1. 1.Keble CollegeUniversity of OxfordOxfordUK
  2. 2.Wolfson CollegeUniversity of OxfordOxfordUK
  3. 3.Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  4. 4.Department of Nuclear MedicineUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations