Advertisement

Phenologies of North American Grasslands and Grasses

  • Geoffrey M. HenebryEmail author
Chapter

Abstract

Inquiry into the phenologies of grasslands and grasses in North America has progressed substantially in the past decade. Four themes of the recent phenological research are surveyed: (1) the role of exotic and invasive species in affecting grasslands phenology; (2) the role of water and belowground dynamics on phenologies; (3) how experimental manipulations of grasslands have affected constitutive phenologies; and (4) advances in the remote sensing of grasslands. The phyllochron concept used in ontogenetic studies of grass species is discussed in light of grasslands phenology and its link between daylength and thermal time.

Keywords

Photosynthetically Active Radiation Thermal Time Snow Removal Exotic Annual Grass Phenological Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research was supported in part by NASA grant NNX12AM89G.

References

  1. Adair EC, Burke IC (2010) Plant phenology and life span influence soil pool dynamics: Bromus tectorum invasion of perennial C3–C4 grass communities. Plant Soil 335(1–2):255–269CrossRefGoogle Scholar
  2. Alcaraz-Segura D, Chuvieco E, Epstein HE, Kasischke ES, Trishchenko A (2010) Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets. Glob Change Biol 16(2):760–770CrossRefGoogle Scholar
  3. Beck HE, McVicar TR, van Dijk AIJM, Schellekens J, de Jeu RAM, Bruijzeel LA (2011) Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens Environ 115:2547–2563CrossRefGoogle Scholar
  4. Benedict HM (1941) Growth of some range grasses in reduced light intensities at Cheyenne, Wyoming. Bot Gaz 102:582–589CrossRefGoogle Scholar
  5. Bradley BA, Mustard JF (2005) Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sens Environ 94(2):204–213CrossRefGoogle Scholar
  6. Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16:1132–1147CrossRefGoogle Scholar
  7. Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, U.S.A. Glob Change Biol 14(2):334–346CrossRefGoogle Scholar
  8. Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve-fitting technique to derive inter-annual phenologies from time series of noisy satellite data. Remote Sens Environ 106:137–145CrossRefGoogle Scholar
  9. Briggs JM, Knapp AK (1995) Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. Am J Bot 82(8):1024–1030CrossRefGoogle Scholar
  10. Briggs JM, Rieck DR, Turner CL, Henebry GM, Goodin DG, Nellis MD (1997) Spatial and temporal patterns of vegetation in the Flint Hills. Trans Kans Acad Sci 100:10–20CrossRefGoogle Scholar
  11. Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82(3):399–415CrossRefGoogle Scholar
  12. Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. PNAS 103(37):13740–13744CrossRefGoogle Scholar
  13. Cleland EE, Larios L, Suding KN (2012) Strengthening invasion filters to reassemble native plant communities: soil resources and phenological overlap. Restor Ecol early online. doi:  10.1111/j.1526-100X.2012.00896.x
  14. Coffin DP, Lauenroth WK (1989) Disturbances and gap dynamics in a semiarid grassland: a landscape-level approach. Landsc Ecol 3(1):19–27CrossRefGoogle Scholar
  15. Craine JM, Towne EG, Nippert JB (2010) Climate controls on grass culm production over a quarter century in a tallgrass prairie. Ecology 91:2132–2140CrossRefGoogle Scholar
  16. Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012a) Timing of climate variability and grassland productivity. PNAS 109(9):3401–3405CrossRefGoogle Scholar
  17. Craine JM, Wolkovish EM, Towne EG, Kembel SW (2012b) Flowering phenology as a functional trait in a tallgrass prairie. New Phytol 193:673–682CrossRefGoogle Scholar
  18. Davidson A, Csillag F (2001) The influence of vegetation index and spatial resolution on a two-date remote sensing derived relation to C4 species coverage. Remote Sens Environ 75:138–151CrossRefGoogle Scholar
  19. Davidson A, Csillag F (2003) A comparison of three approaches for predicting C4 species cover of northern mixed grass prairie. Remote Sens Environ 86:70–82CrossRefGoogle Scholar
  20. de Beurs KM, Henebry GM (2004) Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89(4):497–509. doi: 10.1016/j.rse.2003.11.006 CrossRefGoogle Scholar
  21. de Beurs KM, Henebry GM (2005) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):1551–1573CrossRefGoogle Scholar
  22. de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of northern Eurasia. J Clim 21:4257–4279CrossRefGoogle Scholar
  23. de Beurs KM, Henebry GM (2010) Spatio-temporal statistical methods for modeling land surface phenology. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, New YorkGoogle Scholar
  24. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3(10):e319CrossRefGoogle Scholar
  25. Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73(1):69–86CrossRefGoogle Scholar
  26. Enloe SF, DiTomaso JM, Orloff SB, Drake DJ (2004) Soil water dynamics differ among rangeland plant communities dominated by yellow starthistle (Centaurea solstitialis), annual grasses, or perennial grasses. Weed Sci 52(6):929–935CrossRefGoogle Scholar
  27. Fargione J, Tilman D (2005) Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143(4):598–606CrossRefGoogle Scholar
  28. Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000) Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems 3(3):308–319CrossRefGoogle Scholar
  29. Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011) Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8:3053–3068CrossRefGoogle Scholar
  30. Flanagan LB (2009) Phenology of plant production in the northwestern Great Plains: relationships with carbon isotope discrimination, net ecosystem productivity and ecosystem respiration. In: Noormets A (ed) Phenology of ecosystem processes. Springer, New YorkGoogle Scholar
  31. Foody GM, Dash J (2010) Estimating the relative abundance of C3 and C4 grasses in the Great Plains from multi-temporal MTCI data: issues of compositing period and spatial generalizability. Int J Remote Sens 31(2):351–362CrossRefGoogle Scholar
  32. Fournier C, Durand JL, Ljutovac S, Schäufele R, Gastal F, Andrieu B (2005) A functiona-structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytol 166:881–894CrossRefGoogle Scholar
  33. Goergen EM, Leger EA, Espeland EK (2011) Native perennial grasses show evolutionary response to Bromus tectorum (Cheatgrass) invasion. PLoS One 6(3):e18145CrossRefGoogle Scholar
  34. Goodin DG, Henebry GM (1997) Monitoring ecological disturbance in tallgrass prairie using seasonal NDVI trajectories and a discriminant function mixture model. Remote Sens Environ 61:270–278CrossRefGoogle Scholar
  35. Henebry GM (1993) Detecting change in grasslands using measures of spatial dependence with Landsat TM data. Remote Sens Environ 46:223–234CrossRefGoogle Scholar
  36. Henebry GM (2003) Grasslands of the north American Great Plains. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer, New YorkGoogle Scholar
  37. Henebry GM, de Beurs KM (2013) Remote sensing of land surface phenology: A prospectus. In: Schwartz MD (ed) Phenology: an integrative environmental science, 2nd edn. Elsevier, DordrechtGoogle Scholar
  38. Hermance JF, Jacob RW, Bradley BA, Mustard JF (2007) Extracting phenological signals from multi-year AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping. IEEE Trans Geosci Remote Sens 45:3264–3276CrossRefGoogle Scholar
  39. Huang C-Y, Geiger EL (2008) Climate anomalies provide opportunities for large-scale mapping of non-native plant abundance in desert grasslands. Divers Distrib 14(5):875–884CrossRefGoogle Scholar
  40. Huang C, Geiger EL, Van Leeuwen WJD, Marsh SE (2009) Discrimination of invaded and native species sites in a semi-desert grassland using MODIS multi‐temporal data. Int J Remote Sens 30(4):897–917CrossRefGoogle Scholar
  41. Hudson IL, Keatley MR (2010) Phenological research: methods for environmental and climate change analysis. Springer, New YorkGoogle Scholar
  42. Itoh Y, Sano Y (2006) Phyllochron dynamics under controlled environments in rice (Oryza sativa L.). Euphytica 150:87–95CrossRefGoogle Scholar
  43. Itoh Y, Shimizu H (2012) Phyllochron dynamics during the course of late shoot development might be affected by reproductive development in rice (Oryza sativa L.). Dev Genes Evol 222:341–350CrossRefGoogle Scholar
  44. Kathuroju N, White MA, Symanzik J, Schwartz MD, Powell JA, Nemani RR (2007) On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecol Model 201(1):144–156CrossRefGoogle Scholar
  45. Knapp AK, Seastedt TR (1986) Detritus accumulation limits productivity of tallgrass prairie. BioScience 36(10):662–668CrossRefGoogle Scholar
  46. Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484CrossRefGoogle Scholar
  47. Knapp AK, Briggs JM, Hartnett DC, Collins SL (1998) Grassland dynamics: long-term ecological research in Tallgrass Prairie. Oxford University Press, New YorkGoogle Scholar
  48. Knapp AK, Smith MD, Collins SL, Zambatis N, Peel M, Emery S, Wojdak J, Horner-Devine MC, Biggs H, Kruger J, Andelman SJ (2004) Generality in ecology: testing North American grassland rules in South African savannas. Front Ecol Environ 2:483–491CrossRefGoogle Scholar
  49. McMaster GS (1997) Phenology, development, and growth of the wheat (Triticum aestivum L.) shoot apex: a review. Adv Agron 59:63–118CrossRefGoogle Scholar
  50. McMaster GS (2005) Phytomers, phyllochrons, phenology and temperate cereal development. J Agric Sci 143:137–150CrossRefGoogle Scholar
  51. McMaster GS, Smika DE (1988) Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol 43(1):1–18CrossRefGoogle Scholar
  52. McMaster GS, Wilhelm WW (1998) Is soil temperature better than air temperature for predicting winter wheat phenology? Agron J 90:602–607CrossRefGoogle Scholar
  53. McMillan C (1956a) Nature of the plant community. I. Uniform garden and light period studies of five grass taxa in Nebraska. Ecology 37:330–340CrossRefGoogle Scholar
  54. McMillan C (1956b) Nature of the plant community. II. Variation in flowering behavior within populations of Andropogon scoparius. Ecology 43:429–436Google Scholar
  55. McMillan C (1957) Nature of the plant community. III. Flowering behavior within two grassland communities under reciprocal transplanting. Am J Bot 44:144–153CrossRefGoogle Scholar
  56. McMillan C (1959a) Nature of the plant community. V. Variation within the true prairie community-type. Am J Bot 46:418–424CrossRefGoogle Scholar
  57. McMillan C (1959b) The role of ecotypic variation in the distribution of the central grassland of North America. Ecol Monogr 29:285–308CrossRefGoogle Scholar
  58. McMillan C (1960) Ecotypes and community function. Am Nat 94:245–255CrossRefGoogle Scholar
  59. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede S, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. doi: 10.1111/J.1365-2486.2006.01193.X CrossRefGoogle Scholar
  60. Miyamoto N, Goto Y, Matsui M, Ukai Y, Morita M, Nemoto K (2004) Quantitative trait loci for phyllochron and tillering in rice. Theor Appl Genet 109:700–706CrossRefGoogle Scholar
  61. Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham E, Abatzoglou J, Wilson BE, Breshears DD, Henebry GM, Hanes JM, Liang L (2008) Unlocking the rhythm of the seasons in the face of global change: challenges and opportunities for phenological research in the 21st century. Front Ecol Environ 5(7):253–260. doi: 10.1890/070217 Google Scholar
  62. Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60(7):1927–1937CrossRefGoogle Scholar
  63. Obrist D, Verburg PSJ, Young MH, Coleman JS, Schorran DE, Arnone JA III (2003) Quantifying the effects of phenology on ecosystem evapotranspiration in planted grassland mesocosms using EcoCELL technology. Agric For Meteorol 118(3–4):173–183CrossRefGoogle Scholar
  64. Olmsted CE (1943) Growth and development in range grasses. III. Photoperiodic responses in the genus Bouteloua. Bot Gaz 105:165–181CrossRefGoogle Scholar
  65. Olmsted CE (1944) Growth and development in range grasses. IV. Photoperiodic responses in twelve geographic strains of side-oats gramma. Bot Gaz 106:46–74CrossRefGoogle Scholar
  66. Olmsted CE (1945) Growth and development in range grasses. V. Photoperiodic responses of clonal divisions of three latitudinal strains of side-oats gramma. Bot Gaz 106:382–401CrossRefGoogle Scholar
  67. Parker SS, Schimel JP (2010) Invasive grasses increase nitrogen availability in California grassland soils. Invasive Plant Sci Manag 3(1):40–47CrossRefGoogle Scholar
  68. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  69. Peichl M, Sonnentag O, Wohlfahrt G, Flanagan LB, Baldocchi DD, Kiely G, Galvagno M, Gianelle D, Marcolla B, Pio C, Migliavacca M, Jones MB, Saunders M (2013) Convergence of potential net ecosystem production among contrasting C3 grasslands. Ecol Lett 16(4):502–512. doi: 10.1111/ele.12075 CrossRefGoogle Scholar
  70. Peterson EB (2005) Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM + data. Int J Remote Sens 26(12):2491–2507CrossRefGoogle Scholar
  71. Prater MR, DeLucia EH (2006) Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities. Agric For Meteorol 139(1–2):154–163CrossRefGoogle Scholar
  72. Rice EL (1950) Growth and floral development of five species of range grass in central Oklahoma. Bot Gaz 111:361–377CrossRefGoogle Scholar
  73. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. doi: 10.1016/j.agrformet.2012.09.012 CrossRefGoogle Scholar
  74. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60CrossRefGoogle Scholar
  75. Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  76. Ryu Y, Baldocchi DD, Ma S, Hehn T (2008) Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J Geophys Res 113:D09104CrossRefGoogle Scholar
  77. Schwartz MD (1994) Monitoring global change with phenology: the case of the spring green wave. Int J Biometeorol 38(1):18–22CrossRefGoogle Scholar
  78. Schwartz MD (1998) Green-wave phenology. Nature 394(6696):839–840CrossRefGoogle Scholar
  79. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern Hemisphere. Glob Change Biol 12:343–351CrossRefGoogle Scholar
  80. Sherry RA, Zhou X, Gu S, Arnone JA III, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. PNAS 104(1):198–202CrossRefGoogle Scholar
  81. Steinaker DF, Wilson SD (2008) Phenology of fine roots and leaves in forest and grassland. J Ecol 96(6):1222–1229CrossRefGoogle Scholar
  82. Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Change Biol 16(8):2242–2251Google Scholar
  83. Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315(5812):640–642CrossRefGoogle Scholar
  84. Tieszen LL, Reed BC, Bliss NB, Wylie BK, DeJong DD (1997) NDVI, C3 and C4 production and distributions in Great Plains grassland land cover classes. Ecol Appl 7:59–78Google Scholar
  85. Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland-forest. Vadose Zone J 9(3):537–547CrossRefGoogle Scholar
  86. Wang C, Jamison BE, Spicci AA (2010) Trajectory-based warm season grassland mapping in Missouri prairies with multi-temporal ASTER imagery. Remote Sens Environ 114(3):531–539CrossRefGoogle Scholar
  87. Weaver JE (1954) North American Prairie. Johnsen Publishing, LincolnGoogle Scholar
  88. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increases western U.S. forest wildfire activity. Science 313:940–943CrossRefGoogle Scholar
  89. Wilhelm WW, McMaster GS (1995) Importance of the phyllochron in studying development and growth in grasses. Crop Sci 35:1–3CrossRefGoogle Scholar
  90. Winslow JC, Hunt ER Jr, Piper SC (2003) A phenological model of the global C3 and C4 grass distribution with application to the United States Great Plains under a VEMAP climatic change scenario, Ecological Modelling 163:153–173Google Scholar
  91. Wolkovich EM, Cleland EE (2011) The phenology of plant invasions: a community ecology perspective. Front Ecol Environ 9:287–294CrossRefGoogle Scholar
  92. Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497Google Scholar
  93. Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123(1–2):79–96CrossRefGoogle Scholar
  94. Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA (2003a) Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604CrossRefGoogle Scholar
  95. Zavaleta ES, Thomas BD, Chiariello NR, Asner GP, Shaw MR, Field CB (2003b) Plants reverse warming effect on ecosystem water balance. PNAS 100(17):9892–9893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Geographic Information Science Center of ExcellenceSouth Dakota State UniversityBrookingsUSA

Personalised recommendations