Differential Scanning Calorimetry Applied to Bitumen: Results of the RILEM NBM TG1 Round Robin Test

  • Hilde Soenen
  • Jeroen Besamusca
  • Lily D. Poulikakos
  • Jean-Pascal Planche
  • Prabir K. Das
  • Niki Kringos
  • James Grenfell
  • Emmanuel Chailleux
Part of the RILEM Bookseries book series (RILEM, volume 8)

Abstract

The application of Differential Scanning Calorimetry (DSC) has been proven useful in characterizing bituminous binders, distillates and crude oils. In this paper, results of the round robin test, organized by the Rilem TC 231 Nanotechnology-based Bituminous Materials (NBM) TG1 group are reported. The purpose is to investigate the repeatability and reproducibility of standard DSC measurements when applied to bituminous binders. In the full test program of the Rilem NBM group, DSC measurements are further compared to observations made in atomic force microscopy (AFM), AFM measurements are reported in a separate paper. Seven laboratories have participated in this round robin test. Four bituminous binders were investigated, containing various amounts of natural or added wax. The test program consisted of a well-defined isothermal annealing procedure, followed by a first heating and cooling scan, and afterwards followed by a second heating scan. At this stage, the data, as they were reported by the different participants, were compared. For the glass transition (Tg), mid temperatures, can be defined with a reasonable reproducibility, which improves if natural wax is not present. Regarding melting and crystallization, the shape of the melting curve is highly dependent on the thermal history of the samples. Peak temperatures of melting and crystallization phenomena were reported with a good reproducibility, while the reproducibility of melting enthalpies (or surface area’s under the melting and crystallization signals) was not satisfactory. Different reasons for this and recommendations for improving the results are discussed in the paper.

Keywords

Differential Scanning Calorimetry Glass Transition Differential Scanning Calorimetry Measurement Melting Enthalpy Round Robin Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer, G.: Thermal Properties of Micro-crystalline Waxes in Dependence on the Degree of Deoiling. SOFW Journal 135(8), 43–50 (2009)Google Scholar
  2. 2.
    Edwards, Y.: Influence of Waxes on Bitumen and Asphalt Concrete Mixture Performance. Doctoral Thesis in Highway Engineering, KTH, Sweden (2005)Google Scholar
  3. 3.
    Claudy, P.M., Létoffé, J.-M., Martin, D., Planche, J.-P.: Thermal behavior of asphalt cements. Thermochimica Acta 324, 203–213 (1998)CrossRefGoogle Scholar
  4. 4.
    Michon, L.C., Netzel, D.A., Turner, T.F.: A C13NMR and DSC study of the amorphous and crystalline phases in Asphalts. Energy & Fuels 13, 602–610 (1999)CrossRefGoogle Scholar
  5. 5.
    Harrison, I.R., Wang, G., Hsu, T.C.: SHRP-A/UFR-92-612, A Differential Scanning Calorimetry Study of Asphalt Binders, Strategic Highway Research Program, National Research Council, Washington, DC (1992)Google Scholar
  6. 6.
    Kok, M.V., Létoffé, J.-M., Claudy, P., Martin, D., Garcin, M., Vollet, J.-L.: Comparison of wax appearance temperatures of crude oils by differential scanning calorimetry, thermomicroscopy and viscometry. Fuel 75(7), 787–790 (1996)CrossRefGoogle Scholar
  7. 7.
    Lesueur, D.: Propriétés mécaniques des liants routiers. Thèse de Doctorat, Institut National Des Sciences appliquées de Lyon, France (1996)Google Scholar
  8. 8.
    Lesueur, D., Planche, J.-P., Dumas, P.: Détermination de la teneur en paraffines des bitumes. Bulletin des Laboratoires des Ponts et Chausseés 229, 3–11 (2000)Google Scholar
  9. 9.
    Lu, X., Redelius, P.: Effect of bitumen wax on asphalt mixture performance. Construction and Building Materials 21, 1961–1970 (2006)CrossRefGoogle Scholar
  10. 10.
    Planche, J.P., Claudy, P.M., Létoffé, J.-M., Martin, D.: Using thermal analysis methods to better understand asphalt rheology. Thermochimica Acta 324, 223–227 (1998)CrossRefGoogle Scholar
  11. 11.
    Soenen, H., De Visscher, J., Vanelstraete, A., Redelius, P.: The Influence of Thermal History on Binder Rutting Indicators. IJRMPD 6(2), 217–238 (2005)Google Scholar
  12. 12.
    Lu, X., Soenen, H., Redelius, P.: Impact of Bitumen Wax on Asphalt Performance – Low Temperature Cracking. In: E&E Conference (2004)Google Scholar
  13. 13.
    Claudy, P., Letoffe, J.M., Rondelez, F., Germanaud, L., King, G., Planche, J.P.: A new interpretation of time-dependent physical hardening in asphalt based on DSC and optical thermoanalysis. ACS 92, 1408–1426Google Scholar
  14. 14.
    Evans, M., Hesp, S.A.M.: Physical Hardening Effects on Stress Relaxation in Asphalt Cements and Implications for Pavement Performance transportation research board (2011)Google Scholar
  15. 15.
    Lu, X., Kalman, B., Redelius, P.: A new test method for determination of wax content in crude oils, residues and bitumens. Fuel 87, 1543–1551 (2008)CrossRefGoogle Scholar
  16. 16.
    Lu, X., Langton, M., Olofsson, P., Redelius, P.: Wax morphology in bitumen. J. Mat. Sci. 40, 1893–1900 (2005)CrossRefGoogle Scholar
  17. 17.
    Masson, J.-F., Polomark, G.M.: Bitumen microstructure by modulated differential scanning calorimetry. Thermochimica Acta 374, 105–114 (2001)CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Hilde Soenen
    • 1
  • Jeroen Besamusca
    • 2
  • Lily D. Poulikakos
    • 3
  • Jean-Pascal Planche
    • 4
  • Prabir K. Das
    • 5
  • Niki Kringos
    • 5
  • James Grenfell
    • 6
  • Emmanuel Chailleux
    • 7
  1. 1.Nynas NV, Bitumen ResearchAntwerpBelgium
  2. 2.Kuwait Petroleum R&TEuropoort (RT)The Netherlands
  3. 3.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  4. 4.Western Research InstituteLaramieUSA
  5. 5.Highway and Railway EngineeringKTH Royal Institute of TechnologyStockholmSweden
  6. 6.Nottingham Transportation Engineering CentreUniversity of NottinghamNottinghamUnited Kingdom
  7. 7.Département Matériaux / Groupe Matériaux pour les Infrastructures de TransportsIfsttar, Centre de NantesBouguenaisFrance

Personalised recommendations