Personalizing Tumor Pathophysiology by Diagnosing Developmental Problems in Tumors with Imaging Techniques

Chapter

Abstract

Whereas traditional non-invasive imaging was mostly directed to identify disease-associated morphological alterations, the development of functional and molecular imaging techniques has drawn the interest in disease-specific biomarkers as imaging targets in order to gain deeper insight into the mechanisms underlying tumor development as a basis of an improved, personalized medicine. Based on the ten hallmarks of cancer, current non-invasive imaging modalities, methods and contrast agents are presented in this chapter with respect to tumor characterization and treatment monitoring including their potential or already established applications in the clinics.

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  2. 2.
    Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324PubMedCrossRefGoogle Scholar
  3. 3.
    Schlemmer HP, Becker M, Bachert P, Dietz A, Rudat V, Vanselow B, Wollensack P, Zuna I, Knopp MV, Weidauer H, Wannenmacher M, van Kaick G (1999) Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res 59:2363–2369PubMedGoogle Scholar
  4. 4.
    Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 66:505–519PubMedCrossRefGoogle Scholar
  5. 5.
    Singh D, Miles K (2012) Multiparametric PET/CT in oncology. Cancer Imaging 12:336–344PubMedCrossRefGoogle Scholar
  6. 6.
    Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672PubMedCrossRefGoogle Scholar
  7. 7.
    Bonekamp S, Corona-Villalobos CP, Kamel IR (2012) Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging 35:257–279PubMedCrossRefGoogle Scholar
  8. 8.
    Lee KC, Sud S, Meyer CR, Moffat BA, Chenevert TL, Rehemtulla A, Pienta KJ, Ross BD (2007) An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res 67:3524–3528PubMedCrossRefGoogle Scholar
  9. 9.
    Bäuerle T, Bartling S, Berger M, Schmitt-Gräff A, Hilbig H, Kauczor HU, Delorme S, Kiessling F (2010) Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol 73:280–287PubMedCrossRefGoogle Scholar
  10. 10.
    Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748PubMedCrossRefGoogle Scholar
  11. 11.
    van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-a targeting: first in-human results. Nat Med 17:1315–1319PubMedCrossRefGoogle Scholar
  12. 12.
    Di Muzio N, Fodor A, Berardi G, Mapelli P, Gianolli L, Messa C, Picchio M (2012) Lymph nodal metastases: diagnosis and treatment. Q J Nucl Med Mol Imaging 56:421–429PubMedGoogle Scholar
  13. 13.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499PubMedCrossRefGoogle Scholar
  14. 14.
    Wlodkowic d, J. Skommer J, Darzynkiewicz Z (2012) Cytometry of apoptosis: Historical perspective and new advances. Exp Oncol 34(3):255–262PubMedGoogle Scholar
  15. 15.
    Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95SPubMedCrossRefGoogle Scholar
  16. 16.
    Lederle W, Arns S, Rix A, Gremse F, Doleschel D, Schmaljohann J, Mottaghy FM, Kiessling F, Palmowski M (2011) Failure of annexin-based apoptosis imaging in the assessment of antiangiogenic therapy effects. EJNMMI Res 1(1):26PubMedCrossRefGoogle Scholar
  17. 17.
    Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51(11):1659–1662PubMedCrossRefGoogle Scholar
  18. 18.
    Ray P, De A, Patel M, Gambhir SS (2008) Monitoring caspase-3 activation with a multimodality imaging sensor in living subjects. Clin Cancer Res 14:5801–5809PubMedCrossRefGoogle Scholar
  19. 19.
    Madar I, Huang Y, Ravert H et al (2009) Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium. J Nucl Med 50:774–780PubMedCrossRefGoogle Scholar
  20. 20.
    Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H, Semmler W (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10:1133–1138PubMedCrossRefGoogle Scholar
  21. 21.
    Kiessling F, Razansky D, Alves F (2010) Anatomical and microstructural imaging of angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S4–S19Google Scholar
  22. 22.
    Kiessling F, Jugold M, Woenne EC, Brix G (2007) Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 17:2136–2148PubMedCrossRefGoogle Scholar
  23. 23.
    Lederle W, Palmowski M, Kiessling F (2012) Imaging in the age of molecular medicine: monitoring of anti-angiogenic treatments. Curr Pharm Biotechnol 13:595–608PubMedCrossRefGoogle Scholar
  24. 24.
    Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 16:627–642PubMedCrossRefGoogle Scholar
  25. 25.
    Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F (2008) Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res 68:7042–7049PubMedCrossRefGoogle Scholar
  26. 26.
    Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483PubMedCrossRefGoogle Scholar
  27. 27.
    Neeman M, Gilad AA, Dafni H, Cohen B (2007) Molecular imaging of angiogenesis. J Magn Reson Imaging 25:1–12PubMedCrossRefGoogle Scholar
  28. 28.
    Lungu GF, Li ML, Xie X, Wang LV, Stoica G (2007) In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion. Int J Oncol 30:45–54PubMedGoogle Scholar
  29. 29.
    Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy and theranostics. J Nucl Med 53:345–348PubMedCrossRefGoogle Scholar
  30. 30.
    Kiessling F, Lederle W (2010) Early detection of systems response. Book title: Reichle A. From molecular to modular tumor therapy—tumors are reconstructible communicatively evolving systems (ISBN 978–90-481–9531-2. Series: Isaac Witz. Tumor microenvironment 3. Springer, New York, pp 385–405Google Scholar
  31. 31.
    Valable S, Petit E, Roussel S, Marteau L, Toutain J, Divoux D, Sobrio F, Delamare J, Barré L, Bernaudin M (2011) Complementary information from magnetic resonance imaging and (18)F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model. Nucl Med Biol 38:781–793. (Epub 2011 Apr 21)PubMedGoogle Scholar
  32. 32.
    Kikuchi M, Yamane T, Shinohara S, Fujiwara K, Hori SY, Tona Y, Yamazaki H, Naito Y, Senda M (2011) 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med 25:625–633PubMedCrossRefGoogle Scholar
  33. 33.
    Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T, Ageyeva L, Serganov A, Cai S, Balatoni J, Blasberg R, Gelovani J (2004) Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64:6101–6108PubMedCrossRefGoogle Scholar
  34. 34.
    Daldrup-Link HE, Golovko D, Ruffell B, Denardo DG, Castaneda R, Ansari C, Rao J, Tikhomirov GA, Wendland MF, Corot C, Coussens LM (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704PubMedCrossRefGoogle Scholar
  35. 35.
    Chen X, Wong R, Khalidov I, Wang AY, Leelawattanachai J, Wang Y, Jin MM (2011) Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation. BioMaterials 32:7651–7661PubMedCrossRefGoogle Scholar
  36. 36.
    von Burstin J, Eser S, Seidler B, Meining A, Bajbouj M, Mages J, Lang R, Kind AJ, Schnieke AE, Schmid RM, Schneider G, Saur D (2008) Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int J Cancer 123:2138–2147CrossRefGoogle Scholar
  37. 37.
    Antunes IF, Haisma HJ, Elsinga PH, van Waarde A, Willemsen AT, Dierckx RA, de Vries EF (2012) In vivo evaluation of 1-O-(4-(2-fluoroethyl-carbamoyloxymethyl. -2-nitrophenyl. -O-b-D-glucopyronuronate: a positron emission tomographic tracer for imaging ß-glucuronidase activity in a tumor/inflammation rodent model. Mol Imaging 11:77–87, E1PubMedGoogle Scholar
  38. 38.
    De Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRefGoogle Scholar
  39. 39.
    Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtmann AH, Weissleder R (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63:6838–6846PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department for Experimental Molecular ImagingRWTH-Aachen UniversityAachenGermany

Personalised recommendations