Advertisement

First European Record of a Varanodontine (Synapsida: Varanopidae): Member of a Unique Early Permian Upland Paleoecosystem, Tambach Basin, Central Germany

  • David S Berman
  • Amy C. Henrici
  • Stuart S. Sumida
  • Thomas Martens
  • Valerie Pelletier
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

A new genus and species of varanodontine varanopid, Tambacarnifex unguifalcatus, is described on the basis of the greater portion of the postcranium and a closely associated partial left dentary from the Lower Permian (Wolfcampian) Tambach Formation, the lowermost unit of the Upper Rotliegend, of the Bromacker locality in the midregion of the Thuringian Forest near Gotha, central Germany. Tambacarnifex unguifalcatus can be distinguished from all other varanopids on the basis of unique features of its vertebrae and unguals. A cladistic analysis of Varanopidae resolves T. unguifalcatus as nested within the varanodontines as the sister taxon of Varanops in a terminal dichotomy, which in turn forms the sister clade of the terminal dichotomy Varanodon+Watongia. The position of Aerosaurus is unaltered from previous analyses as the basal taxon of Varanodontinae. Elliotsmithia, which has been assigned alternately to both the varanodontines and the mycterosaurines, is resolved as a member of the latter. Tambacarnifex unguifalcatus is, therefore, the only varanodontine known from outside of North America. Within the Mycterosaurinae clade Mycterosaurus and Mesenosaurus resolve as a terminal dichotomy with Elliotsmithia and Heleosaurus related as successive sister taxa. As in previous analyses, Archaeovenator retains its position as the basal taxon of Varanopidae. Tambacarnifex unguifalcatus was an apex predator in a unique, heretofore undocumented Early Permian paleoecosystem in which the vertebrates were highly terrestrial inhabitants of an upland terrestrial setting, and constituted an early stage in the evolution of the modern terrestrial vertebrate trophic system, with herbivores greatly outnumbering apex predators in diversity, abundance, and biomass.

Keywords

Bromacker locality Tambach Formation Paleoenvironment Paleobiology Trophic system Eupelycosauria 

Notes

Acknowledgments

Research for this project was supported in part by a grants from the Deutsche Forschungsgemeinschaft (DFG) (to TM), and the National Geographic Society (to DSB, ACH, & SSS). Sincere thanks are also due the Rotary Club of Gotha, Germany, for continued financial support for the Bromacker project. We are greatly indebted to Mr. Mark Klinger of the Carnegie Museum of Natural History for his expertise in producing the figures. We acknowledge the invaluable contributions of the numerous, dedicated volunteer field assistants, whose tedious backbreaking labors since 1993 have been responsible for the discovery and recovery of many of the specimens from the Bromacker quarry. Special thanks are extended to the reviewers S. P. Modesto and R. A. Kissel, whose constructive comments and criticisms had considerable impact on the improvement of this paper. Finally, we are especially grateful to David A. Eberth, who initially brought our attention the uniqueness of the Bromacker locality paleoecosystem, which was first described in his seminal publication Eberth et al. (2000).

References

  1. Anderson, J. S., & Reisz, R. R. (2004). Pyozia mesenensis, a new small varanopid (Synapsida, Eupelycosauria) from Russia: “Pelycosaur” diversity in the Middle Permian. Journal of Vertebrate Paleontology, 24, 173–179.CrossRefGoogle Scholar
  2. Anderson, J., Henrici, A. C., Sumida, S. S., Martens, T., & Berman, D. S (2008). Georgenthalia clavinasica, a new genus and species of dissorophoid temnospondyl from the Early Permian of Germany, and the relationships of the Family Amphibamidae. Journal of Vertebrate Paleontology, 28, 61–75.CrossRefGoogle Scholar
  3. Berman, D. S, Reisz, R. R., & Eberth, D. A. (1987). Seymouria sanjuanensis (Amphibia, Batrachosauria) from the Lower Permian Cutler Formation of north-central New Mexico and the occurrence of sexual dimorphism in that genus questioned. Canadian Journal of Earth Sciences, 24, 1769–1784.Google Scholar
  4. Berman, D. S, & Martens, T. (1993). First occurrence of Seymouria (Amphibia: Batrachosauria) in the Lower Permian Rotliegend of central Germany. Annals of Carnegie Museum, 62, 63–79.Google Scholar
  5. Berman, D. S, & Reisz, R. R. (1982). Restudy of Mycterosaurus longiceps (Reptilia, Pelycosauria) from the Lower Permian of Texas. Annals of Carnegie Museum, 51, 423–453.Google Scholar
  6. Berman, D. S, Sumida, S. S., & Lombard, R. E. (1997). Biogeography of primitive amniotes. In S. S. Sumida & K. L. M. Martin (Eds.), Amniote origins: Completing the transition to land (pp. 85–139). San Diego: Academic Press.CrossRefGoogle Scholar
  7. Berman, D. S, Sumida, S. S., & Martens, T. (1998). Diadectes (Diadectomorpha: Diadectidae) from the Early Permian of central Germany, with description of a new species. Annals of Carnegie Museum, 67, 53–93.Google Scholar
  8. Berman, D. S, Reisz, R. R., Scott, D., Henrici, A. C., Sumida, S. S., & Martens, T. (2000). Early Permian bipedal reptile. Science, 290, 969–972.Google Scholar
  9. Berman, D. S, Henrici, A. C., Sumida, S. S., & Martens, T. (2000a). Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of paleoecology of the Bromacker locality assemblage. Journal of Vertebrate Paleontology, 20, 253–268.CrossRefGoogle Scholar
  10. Berman, D. S, Reisz, R. R., Scott, D., Henrici, A. C., Sumida, S. S., & Martens, T. (2000b). Early Permian bipedal reptile. Science, 290, 969–972.CrossRefGoogle Scholar
  11. Berman, D. S, Reisz, R. R., Martens, T., & Henrici, A. C. (2001). A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Canadian Journal of Earth Sciences, 38, 803–812.CrossRefGoogle Scholar
  12. Berman, D. S, Henrici, A. C., Kissel, R. A., Sumida, S. S., & Martens, T. (2004a). A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of central Germany. Bulletin of Carnegie Museum of Natural History, 35, 1–36.CrossRefGoogle Scholar
  13. Berman, D. S, Henrici, A. C., Sumida, S. S., & Martens, T. (2004b). New materials of Dimetrodon teutonis (Synapsida: Sphenacodontidae) from the Lower Permian of Germany. Annals of Carnegie Museum, 73, 48–56.Google Scholar
  14. Berman, D. S, Henrici, A. C., & Sumida, S. S. (2009). Pelycosaurian-grade synapsids from the Lower Permian Bromacker locality, central Germany. Journal of Vertebrate Paleontology, 29, 62A.Google Scholar
  15. Berman, D. S, Henrici, A. C., Martens, T., Sumida, S. S., & Anderson, J. S. (2011). Rotaryus gothae, a new trematopid (Temnospondyli: Dissorophoidea) from the Lower Permian of central Germany. Annals of Carnegie Museum, 80, 49–65.Google Scholar
  16. Botha-Brink, J., & Modesto, S. P. (2007). A mixed-aged classed ‘pelycosaur’ aggregation from south Africa: Earliest evidence of parental care in amniotes? Proceedings of the Royal Society B, 274, 2829–2834.CrossRefGoogle Scholar
  17. Botha-Brink, J., & Modesto, S. P. (2009). Anatomy and relationships of the Middle Permian varanopid Heleosaurus scholtzi based on a social aggregation from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology, 29, 389–400.CrossRefGoogle Scholar
  18. Boy, J. A., & Martens, T. (1991). A new captorhinomorph reptile from the Rotliegend of Thuringia (Lower Permian; eastern Germany). Paläontologische Zeitschrift, 65, 363–389.CrossRefGoogle Scholar
  19. Bremer, K. (1994). Branch support and tree stability. Cladistics, 10, 295–304.CrossRefGoogle Scholar
  20. Broili, F. (1904). Permische Stegocephalen und Reptilien aus Texas. Palaeontographica, 51, 80–84.Google Scholar
  21. Broom, R. (1907). On some new fossil reptiles from the Karroo beds of Victoria West, South Africa. Transactions of the South African Philosophical Society, 18, 31–42.Google Scholar
  22. Broom, R. (1937). A further contribution to our knowledge of the fossil reptiles of the Karroo. Proceedings of the Zoological Society Series B, 1937, 299–318.Google Scholar
  23. Campione, N. E., & Reisz, R. R. (2010). Varanops brevirostris (Eupelycosauria: Varanopidae) from the Lower Permian of Texas, with discussion of varanopid morphology and interrelationships. Journal of Paleontology, 30, 724–746.Google Scholar
  24. Carroll, R. L. (1968). A diapsid (Reptilia) parietal from the Lower Permian of Oklahoma. Postilla, 117, 1–7.Google Scholar
  25. Dilkes, D., & Reisz, R. R. (1996). The first record of a basal synapsid (“mammal-like reptile”) in Gondwana. Proceedings of the Royal Society Series B, 264, 1165–1170.CrossRefGoogle Scholar
  26. Eberth, D. A., & Berman, D. S. (1993). Stratigraphy, sedimentology, and vertebrate paleoecology of the Cutler Formation redbeds (Pennsylvanian-Permian) of north-central New Mexico. In S. G. Lucas & J. Zidek (Eds.), Vertebrate Paleontology in New Mexico (pp. 33–48). New Mexico Museum of Natural History and Science Bulletin, 2.Google Scholar
  27. Eberth, D. A., Berman, D. S, & Hopf, H. (2000). Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): The upland Holy Grail. Palaios, 15, 293–313.CrossRefGoogle Scholar
  28. Efremov, J. A. (1938). Some new Permian reptiles of the USSR. Academy of Sciences URSS C.R., 19, 121–126.Google Scholar
  29. Fröbisch, N. B., & Reisz, R. R. (2008). A new Lower Permian amphibamid (Dissorophoidea, Temnospondyli) from the fissure fill deposits near Richards Spur, Oklahoma. Journal of Vertebrate Paleontology, 28, 1015–1030.CrossRefGoogle Scholar
  30. Henrici, A. C., Martens, T., Berman, D. S, & Sumida, S. S. (2011). An ostodolepid “microsaur” (Lepospondyli) from the Lower Permian Tambach Formation of Central Germany. Journal of Vertebrate Paleontology, 31, 997–1004.CrossRefGoogle Scholar
  31. Kammerer, C. F., & Angielczyk, K. D. (2009). A proposed higher taxonomy of anomodont therapsids. Zootaxa, 2018, 1–24.Google Scholar
  32. Kemp, T. S. (1982). Mammal-like reptiles and the origin of mammals. London: Academic Press.Google Scholar
  33. Kissel, R. A., Dilkes, D. W., & Reisz, R. R. (2002). Captorhinus magnus, a new captorhinid (Amniota: Eureptilia) from the Lower Permian of Oklahoma, with new evidence on the homology of the astragalus. Canadian Journal of Earth Sciences, 39, 1363–1372.CrossRefGoogle Scholar
  34. Klembara, J., Berman, D. S, Henrici, A. C., & Čerčanský, A. (2005). New structures and reconstructions of the skull of the seymouriamorph Seymouria sanjuanensis, Vaughn. Annals of Carnegie Museum, 74, 1–8.CrossRefGoogle Scholar
  35. Klembara, J., Berman, D. S, Henrici, A. C., Čerčanský, A., & Werneburg, R. (2006). Comparison of cranial anatomy and proportions of similarly sized Seymouria sanjuanensis and Discosauriscus austriacus. Annals of Carnegie Museum, 75, 37–49.CrossRefGoogle Scholar
  36. Klembara, J., Berman, D. S, Henrici, A. C., Čerčanský, A., Werneburg, R., & Martens, T. (2007). First description of skull of Lower Permian Seymouria sanjuanensis (Seymouriamorpha: Seymouridae) at an early juvenile growth stage. Annals of Carnegie Museum, 76, 53–72.CrossRefGoogle Scholar
  37. Langston, W., Jr., & Reisz, R. R. (1981). Aerosaurus wellesi, new species, a varanopseid mammal-like reptile (Synapsida: Pelycosauria) from the Lower Permian of New Mexico. Journal of Vertebrate Paleontology, 1, 73–96.CrossRefGoogle Scholar
  38. Laurin, M. (2004). The evolution of body size, Cope’s Rule and the origin of the amniotes. Systematic Biology, 53, 594–622.CrossRefGoogle Scholar
  39. Lucas, S. G. (2006). Global Permian tetrapod biostratigraphy and biochronology. In S. G. Lucas, G. Cassinis, & J. W. Schneider (Eds.), Non-marine Permian biostratigraphy and biochronology (Vol. 265, pp. 65–93). London: Geological Society, Special Publications.Google Scholar
  40. Maddin, H. C., & Reisz, R. R. (2007). The morphology of the terminal phalanges in Permo-Carboniferous synapsids: An evolutionary perspective. Canadian Journal of Earth Sciences, 44, 267–274.CrossRefGoogle Scholar
  41. Maddin, H. C., Evans, D. C., & Reisz, R. R. (2006). An Early Permian varanodontine varanopid (Synapsida: Eupelycosauria) from the Richards Spurs locality, Oklahoma. Journal of Vertebrate Paleontology, 26, 957–966.CrossRefGoogle Scholar
  42. Maddison, D. R., & Maddison, W. R. (1992). MacClade: Analysis of phylogeny and character evolution. Sunderland: Sinauer Associates.Google Scholar
  43. Martens, T. (1980). Beitrag zur Taxonomie und Ökologie des Oberrotliegenden im Elgersburger Becken in Thüringen. Abhandlungen und Berichte des Museums der Natur Gotha, 10, 21–32.Google Scholar
  44. Martens, T. (1982). Zur Stratigraphie, Taxonomie, Ökologie und Klimaentgwicklung des Oberrotliegenden (Unteres Perm) im Thüringer Wald (DDR). Abhandlungen und Berichte des Museums der Natur Gotha, 11, 33–57.Google Scholar
  45. Modesto, S., Sidor, C. A., Rubidge, B. S., & Welman, J. (2001). A second varanopseid skull from the Upper Permian of South Africa: Implications for Late Permian ‘pelycosaur’ evolution. Lethaia, 34, 249–259.CrossRefGoogle Scholar
  46. Modesto, S. P., Smith, R. M. H., Campione, N. C., & Reisz, R. R. (2011). The last “pelycosaur”: A varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa. Naturwissenschaften, 98, 1027–1034.CrossRefGoogle Scholar
  47. Müller, J., Berman, D. S, Henrici, A. C., Martens, T., & Sumida, S. S. (2006). The basal reptile Thuringothyris mahlendorffae (Amniota: Eureptilia) from the Lower Permian of Germany. Journal of Paleontology, 80, 726–739.CrossRefGoogle Scholar
  48. Olson, E. C. (1952). The evolution of the Permian vertebrate chronofauna. Evolution, 6, 181–196.CrossRefGoogle Scholar
  49. Olson, E. C. (1965). New Permian vertebrates from the Chickasha Formation in Oklahoma. Oklahoma Geological Survey Circular, 70, 1–69.Google Scholar
  50. Olson, E. C. (1966). Community evolution and the origin of mammals. Evolution, 47, 291–301.Google Scholar
  51. Olson, E. C. (1971). Vertebrate paleozoology. New York: Wiley Interscience.Google Scholar
  52. Olson, E. C. (1974). On the source of therapsids. Annals of the South African Museum, 64, 27–46.Google Scholar
  53. Olson, E. C. (1975). Permo-Carboniferous paleoecology and morphotypic series. American Zoologist, 15, 371–389.Google Scholar
  54. Olson, E. C. (1976). The exploitation of land by early tetrapods. In A. D. Bellairs & C. B. Cox (Eds.), Morphology and biology of Reptiles. Linnean Society Symposium Series, 3, 207–264.Google Scholar
  55. Olson, E. C. (1979). Biological and physical factors in the dispersal of Permo-Carboniferous terrestrial vertebrates. In J. Gray & A. J. Boucot (Eds.), Historical biogeography, plate tectonics and the changing environment (pp. 227–238). Corvallis: Oregon State University Press.Google Scholar
  56. Olson, E. C. (1983). Coevolution or coadaptation: Permo-Carboniferous vertebrate Chronofauna. In M. Nitecki (Ed.), Coevolution (pp. 301–338). Chicago: University of Chicago Press.Google Scholar
  57. Olson, E. C. (1991). An eryopid (Amphibian: Labyrinthodontia) from the Fort Sill fissures, Lower Permian, Oklahoma. Journal of Vertebrate Paleontology, 11, 130–132.Google Scholar
  58. Osborn, H. F. (1903). On the primary division of the Reptilia into two sub-classes, Synapsida and Diapsida. Science, 17, 275–276.Google Scholar
  59. Pabst, W. (1895). Thierfährten aus dem Rothliegenden von Friedrichroda, Tambach and Kabarz in Thüringen. Zeitschrift der deutschen geologischen Gesellschaft, 47, 570–576.Google Scholar
  60. Pawley, K., & Warren, A. (2006). The appendicular skeleton of Eryops megacephalus Cope, 1877 (Temnospondyli: Eryopoidae) from the Lower Permian of North Americas. Journal of Paleontology, 80, 561–580.CrossRefGoogle Scholar
  61. Pelletier, V. (2013). Postcranial description and reconstruction of the varanodontine varanopid Aerosaurus wellesi (Synapsida: Eupelycosauria). In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 53–68). Dordrecht: Springer.Google Scholar
  62. Pohlig, H. (1885). Saurierfährten in dem Unteren Rotliegenden von Friedrichroda. Verhandlungen des naturhistorischen Vereins der preussischen Rheinlande und Westfalens, 42, 285–286.Google Scholar
  63. Reisz, R. R. (2005). Oromycter, a new caseid from the Lower Permian of Oklahoma. Journal of Vertebrate Paleontology, 25, 905–910.CrossRefGoogle Scholar
  64. Reisz, R. R., & Berman, D. S (2001). The skull of Mesenosaurus romeri, a small varanopseid (Synapsida: Eupelycosauria) from the Upper Permian of the Mezen River Basin, Northern Russia. Annals of Carnegie Museum, 70, 113–132.Google Scholar
  65. Reisz, R. R., & Dilkes, D. W. (2003). Archaeovenator hamiltonensis, a new varanopid (Synapsida: Eupelycosauria) from the Upper Carboniferous of Kansas. Canadian Journal of Earth Sciences, 40, 667–678.CrossRefGoogle Scholar
  66. Reisz, R. R., & Laurin, M. (2004). A reevaluation of the enigmatic Permian synapsid Watongia and of its stratigraphic significance. Canadian Journal of Earth Sciences, 41, 377–386.CrossRefGoogle Scholar
  67. Reisz, R. R., & Modesto, S. P. (2007). Heleosaurus scholtzi from the Permian of South Africa: A varanopid synapsid, not a diapsid reptile. Journal of Vertebrate Paleontology, 27, 234–239.CrossRefGoogle Scholar
  68. Reisz, R. R., Dilkes, D. W., & Berman, D. S (1998). Anatomy and relationships of Elliotsmithia longiceps Broom, a small synapsid (Eupelycosauria: Varanopseidae) from the Late Permian of South Africa. Journal of Vertebrate Paleontology, 18, 602–611.CrossRefGoogle Scholar
  69. Reisz, R. R., Schoch, R. R., & Anderson, J. S. (2009). The armoured dissorophid Cacops from the Early Permian of Oklahoma and the exploitation of the terrestrial realm by amphibians. Naturwissenschaften, 96, 789–796.CrossRefGoogle Scholar
  70. Reisz, R. R., Fröbisch, J., Berman, D. S, & Henrici, A. C. (2010). New Permo-Carboniferous caseid synapsids from North America and Europe and their evolutionary significance. Program and Abstracts, Society of Vertebrate Paleontology Annual Meeting, Pittsburgh, Pennsylvania, 150A.Google Scholar
  71. Romer, A. S. (1936). Studies on American Permo-Carboniferous tetrapods. Problems of Paleontology, 1, 85–93.Google Scholar
  72. Romer, A. S., & Price, L. I. (1940). Review of the Pelycosauria. Geological Society of America Special Papers, 28, 1–538.Google Scholar
  73. Sullivan, C., & Reisz, R. R. (1999). First record of Seymouria (Vertebrata: Seymouriamorpha) from Early Permian fissure fills at Richards Spur, Oklahoma. Journal of Earth Sciences, 36, 1257–1266.Google Scholar
  74. Sullivan, C., Reisz, R. R., & May, W. J. (2000). Large dissorophoid skeletal elements from the Lower Permian Richards Spur fissure, Oklahoma, and their paleoecological implications. Journal of Vertebrate Paleontology, 20, 456–461.CrossRefGoogle Scholar
  75. Sumida, S. S., Berman, D. S, & Martens, T. (1996). Biostratigraphic correlation between the Lower Permian of North America and central Europe using the first record of an assemblage of terrestrial tetrapods from Germany. In C. J. Bell & S. S. Sumida (Eds.), The uses of vertebrates fossils in biostratigraphic correlation. PaleoBios, 17, 1–12.Google Scholar
  76. Sumida, S. S., Berman, D. S, & Martens, T. (1998). A new trematopid amphibian from the Lower Permian of central Germany. Palaeontology, 41, 605–629.Google Scholar
  77. Sumida, S. S., Berman, D. S, Eberth, D. A., & Henrici, A. C. (2004). A terrestrial vertebrate assemblage from the late Paleozoic of central Germany, and its bearing on Lower Permian paleoenvironments. In G. C. Young (Ed.), Lower vertebrates from the Paleozoic. First International Palaeontological Congress, Sidney, Australia, July 2002, Proceedings of Symposium 6. Fossils and Strata, 50, 113–123.Google Scholar
  78. Swofford, D. L. (1993). Phylogenetic analysis using parsimony. Champaign: Illinois Natural History Survey.Google Scholar
  79. Vaughn, P. P. (1966). Seymouria from the Lower Permian of southeastern Utah, and possible sexual dimorphism in that genus. Journal of Paleontology, 40, 603–612.Google Scholar
  80. Vaughn, P. P. (1969). Comparisons of the Early Permian vertebrate faunas of the Four Corners region and north-central Texas. Los Angeles County Museum of Natural History, Contributions in Science, 105, 1–13.Google Scholar
  81. Vaughn, P. P. (1970). Lower Permian vertebrates of the Four Corners and the Midcontinent as indices of climate differences. Proceedings of the 1969 North American Paleontological Convention, 388–408.Google Scholar
  82. Voigt, S., Berman, D. S, & Henrici, A. C. (2007). First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology, 27, 553–570.CrossRefGoogle Scholar
  83. Williston, S. W. (1911). American Permian vertebrates. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  84. Williston, S. W. (1914). The osteology of some American Permian vertebrates. Journal of Geology, 22, 364–419.CrossRefGoogle Scholar
  85. Williston, S. W. (1915). A new genus and species of American Theromorpha, Mycterosaurus longiceps. Journal of Geology, 23, 554–559.CrossRefGoogle Scholar
  86. Woodhead, J. R., Reisz, R. R., Fox, D., Drysdale, R., Hellstrom, J., Maas, R., et al. (2010). Speleothem climate records from deep time? Exploring the potential with an example from the Permian. Geology, 38, 445–458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • David S Berman
    • 1
  • Amy C. Henrici
    • 1
  • Stuart S. Sumida
    • 2
  • Thomas Martens
    • 3
  • Valerie Pelletier
    • 2
  1. 1.Section of Vertebrate PaleontologyCarnegie Museum of Natural HistoryPittsburghUSA
  2. 2.Department of BiologyCalifornia State University San BernardinoSan BernardinoUSA
  3. 3.Abteilung PaleontologyMuseum der NaturGothaGermany

Personalised recommendations