Was Ophiacodon (Synapsida, Eupelycosauria) a Swimmer? A Test Using Vertebral Dimensions
- 7 Citations
- 13 Mentions
- 1.1k Downloads
Abstract
Ophiacodon, a Permian synapsid, has been hypothesized to be semi-aquatic. This interpretation is based on a range of evidence, including observations of histology, phalangeal morphology, dentition, and taphonomy. However, many of these data are inconclusive or have been reinterpreted. Here we investigate whether the morphology of the axial skeleton in Ophiacodon displays specializations for aquatic locomotion. Qualitative and quantitative comparisons of Ophiacodon to extant terrestrial and semi-aquatic tetrapods demonstrate that the distribution of centrum lengths in its vertebral column is similar in some ways to those of extant semi-aquatic reptiles. However, other basal synapsids that are widely regarded as terrestrial show comparable patterns, and the correlation between swimming style and vertebral morphology in extant semi-aquatic tetrapods may be weaker than previously thought. Therefore, vertebral proportions provide little support for a semi-aquatic lifestyle in Ophiacodon. Given that most lines of evidence are equivocal at best, we suggest that future studies that consider the ecology of Ophiacodon use a terrestrial lifestyle as a null hypothesis.
Keywords
Permian Carboniferous Centrum length Limb length Aquatic tetrapods OphiacodontidaeNotes
Acknowledgments
Data collection for this project was supported by a Field Museum Internship awarded to RNF. We thank P. Holroyd, A. Resetar, W. Simpson, and W. Stanley for assistance with specimens. K. Melstrom measured the terrestrial varanid specimens. J. Caruso, D. Heins, and R. Parsley provided feedback on a previous version of the manuscript. S. Pierce, S. Sumida, and an anonymous reviewer also provided helpful suggestions. Presentation of results from this study at the 2008 Annual Meeting of the Society of Vertebrate Paleontology was made possible by a grant from The Jackson School of Geosciences, University of Texas, Austin.
References
- Berman, D. S, Reisz, R. R., Bolt, J. R., & Scott, D. (1995). The cranial anatomy and relationships of the synapsid Varanosaurus (Eupelycosauria: Ophiacodontidae) from the early Permian of Texas and Oklahoma. Annals of Carnegie Museum, 64, 99–133.Google Scholar
- Berman, D. S, Henrici, A. C., Sumida, S. S., & Martens, T. (2000). Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of the paleoecology of the Bromacker Locality Assemblage. Journal of Vertebrate Paleontology, 20, 253–268.CrossRefGoogle Scholar
- Berman, D. S, Reisz, R. R., Martens, T., & Henrici, A. C. (2001). A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Canadian Journal of Earth Sciences, 38, 80–812.CrossRefGoogle Scholar
- Berman, D. S, Henrici, A. C., Kissel, R. A., Sumida, S. S., & Martens, T. (2004). A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of central Germany. Bulletin of Carnegie Museum of Natural History, 35, 1–36.CrossRefGoogle Scholar
- Berman, D. S, Henrici, A. C., Sumida, S. S., Martens, T., & Pelletier, V. (2013). First European record of a varanodontine (Synapsida: Varanopidae): Member of a unique Early Permian upland ecosystem, Tambach Basin, central Germany. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 69–86). Dordrecht: Springer.Google Scholar
- Braziatis, P. (1973). The identification of living crocodilians. Zoologica, 58, 59–101.Google Scholar
- Brinkman, D. (1988). Size-independent criteria for estimating relative age in Ophiacodon and Dimetrodon (Reptilia, Pelycosauria) from the Admiral and Lower Belle Plains Formations of West-Central Texas. Journal of Vertebrate Paleontology, 8, 172–180.CrossRefGoogle Scholar
- Buchholtz, E. A. (1998). Implications of vertebral morphology for locomotor evolution in early Cetacea. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 325–352). New York: Plenum Press.CrossRefGoogle Scholar
- Buchholtz, E. A. (2001a). Swimming styles in Jurassic ichthyosaurs. Journal of Vertebrate Paleontology, 21, 61–73.CrossRefGoogle Scholar
- Buchholtz, E. A. (2001b). Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). Journal of Zoology, 253, 175–190.CrossRefGoogle Scholar
- Buchholtz, E. A., & Schur, S. A. (2004). Vertebral osteology in Delphinidae (Cetacea). Zoological Journal of the Linnean Society, 140, 383–401.CrossRefGoogle Scholar
- Buchholtz, E. A., Wolkovitch, E. M., & Cleary, R. J. (2005). Vertebral osteology and complexity in Lagenorhynchus acutus (Delphinidae) with comparison to other delphinoid genera. Marine Mammal Science, 21, 411–428.CrossRefGoogle Scholar
- Buchholtz, E. A., Booth, A. C., & Webbink, K. E. (2007). Vertebral anatomy in the Florida Manatee, Trichechus manatus latirostris: A developmental and evolutionary analysis. The Anatomical Record, 290, 624–637.CrossRefGoogle Scholar
- Canoville, A., & Laurin, M. (2010). Evolution of humeral microanatomy and lifestyle in amniotes, an some comments on palaeobiological inferences. Biological Journal of the Linnean Society, 100, 384–406.CrossRefGoogle Scholar
- Carpenter, K. (2009). Role of lateral body bending in crocodylian track making. Ichnos, 16, 202–207.CrossRefGoogle Scholar
- Carroll, R. L. (1986). The skeletal anatomy and some aspects of the physiology of primitive reptiles. In N. Hotton, P. D. MacLean, J. J. Roth, & E. C. Roth (Eds.), The ecology and biology of mammal-like reptiles (pp. 25–45). Washington, DC: Smithsonian Institution Press.Google Scholar
- Case, E. C. (1907). Revision of the Pelycosauria of North America. Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
- Case, E. C. (1915). The Permo-Carboniferous red beds of North America and their vertebrate fauna. Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
- Cope, E. D. (1878). Descriptions of extinct Batrachia and Reptilia from the Permian formation of Texas. Proceedings of the American Philosophical Society, 17, 505–530.Google Scholar
- de Ricqlès, A. (1974). Recherches paléohistologiques sur les os longs des tétrapodes. IV—éothériodontes et pélycosaures. Annales de Paléontologie (Vertébratés), 60, 3–39.Google Scholar
- de Ricqlès, A. (1989). Les méchanismes hétérochroniques dans le retour des tétrapodes au Milieu aquatique. Geobios Mémoir Spécial, 12, 337–348.CrossRefGoogle Scholar
- de Ricqlès, A., & de Buffrénil, V. (2001). Bone histology, heterochronies and the return of tetrapods to life in water. In J. M. Mazin & V. de Buffrénil (Eds.), Secondary adaptation of tetrapods to life in water (pp. 289–310). München: Verlag Dr. Friedrich Pfeil.Google Scholar
- Eberth, D. A., & Miall, A. D. (1991). Stratigraphy, sedimentology and evolution of a vertebrate-bearing, braided to anastomosed fluvial system, Cutler Formation (Permian-Pennsylvanian), north-central New Mexico. Sedimentary Geology, 72, 225–252.CrossRefGoogle Scholar
- Eberth, D. A., & Berman, D. S (1993). Stratigraphy, sedimentology, and vertebrate paleoecology of the Cutler Formation redbeds (Pennsylvanian-Permian) of north central New Mexico. In S. G. Lucas & J. Zidek (Eds.) Vertebrate Paleontology in New Mexico (pp. 33–48). New Mexico Museum of Natural History and Science 2.Google Scholar
- Eberth, D. A., Berman, D. S, Sumida, S. S., & Hopf, H. (2000). Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): The upland Holy Grail. Palaios, 15, 293–313.CrossRefGoogle Scholar
- Enlow, D. H., & Brown, S. O. (1957). A comparative histological study of fossil and recent bone tissues. Part II. Texas Journal of Science, 9, 186–214.Google Scholar
- Evans, D. C., Maddin, H. C., & Reisz, R. R. (2009). A re-evaluation of sphenacodontid synapsid material from the Lower Permian fissure fills near Richards Spur, Oklahoma. Palaeontology, 52, 219–227.CrossRefGoogle Scholar
- Fish, F. E. (1984). Kinematics of undulatory swimming in the American Alligator. Copeia, 4, 839–843.CrossRefGoogle Scholar
- Fish, F. E. (1993). Comparison of swimming kinematics in terrestrial and semiaquatic opossums. Journal of Mammalogy, 74, 275–284.CrossRefGoogle Scholar
- Fish, F. E. (1994). Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). Journal of Mammalogy, 75, 989–997.CrossRefGoogle Scholar
- Fish, F. E. (1996). Transitions from drag-based to lift-based propulsion in mammalian aquatic swimming. American Zoologist, 36, 628–641.Google Scholar
- Fish, F. E. (2001). A mechanism for evolutionary transition in swimming mode by mammals. In J. M. Mazin & V. de Buffrénil (Eds.), Secondary adaptation of tetrapods to life in water (pp. 261–287). München: Verlag Dr. Friedrich Pfeil.Google Scholar
- Germain, D., & Laurin, M. (2005). Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda). Zoologica Scripta, 34, 335–350.CrossRefGoogle Scholar
- Gingerich, P. D. (1998). Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 423–449). New York: Plenum Press.CrossRefGoogle Scholar
- Gingerich, P. D. (2003). Land-to-sea transition in early whales: Evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology, 29, 429–454.CrossRefGoogle Scholar
- Girondot, M., & Laurin, M. (2003). Bone profiler: A tool to quantify, model, and statistically compare bone-section compactness. Journal of Vertebrate Paleontology, 23, 458–461.CrossRefGoogle Scholar
- Gould, S. J. (1965). Evolutionary patterns in pelycosaurian reptiles: A factor-analytic study. Evolution, 21, 385–401.CrossRefGoogle Scholar
- Hentz, T. F. (1988). Lithostratigraphy and paleoenvironments of upper Paleozoic continental red beds, north-central Texas: Bowie (new) and Wichita (revised) groups. University of Texas at Austin Bureau of Economic Geology Report of Investigations, 170, 1–55.Google Scholar
- Hentz, T. F. (1989). Depositional environments of the Early Permian coastal plain, north-cental Texas: A synopsis. In R. W. Hook (Ed.), Permo-Carboniferous vetebrate paleontology, lithostratigraphy, and depositional environments of North-Central Texas (pp. 22–39). 49th Annual Meeting of the Society of Vertebrate Paleontology, Field Trip Guidebook 2.Google Scholar
- Houssaye, A. (2009). “Pachyostosis” in aquatic amniotes: A review. Integrative Zoology, 4, 325–340.CrossRefGoogle Scholar
- Hunt, A. P., & Lucas, S. G. (1998). Vertebrate tracks and the myth of the belly-dragging, tail-dragging tetrapods of the late Paleozoic. In S. G. Lucas, J. W. Estep, & J. M. Hoffer (Eds.), Permian stratigraphy and paleontology of the Robledo Mountains, New Mexico (pp. 67–69). New Mexico Museum of Natural History and Science Bulletin, 12.Google Scholar
- Jasinoski, S. C., & Chinsamy-Turan, A. (2012). Biological inferences of the cranial microstructure of the dicynodonts Oudenodon and Lystrosaurus. In A. Chinsamy-Turan (Ed.), The Forerunners of mammals: Radiation, histology, biology (pp. 149–176). Bloomington: Indiana University Press.Google Scholar
- Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2009). Comparative feeding biomechanics of Lystrosaurus and the generalized dicynodont Oudenodon. Anatomical Record, 292, 862–874.CrossRefGoogle Scholar
- Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2010a). Functional implications of dicynodont cranial suture morphology. Journal of Morphology, 271, 705–728.Google Scholar
- Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2010b). Mechanics of the scarf premaxilla-nasal suture in the snout of Lystrosaurus. Journal of Vertebrate Paleontology, 30, 1283–1288.CrossRefGoogle Scholar
- Jasinoski, S. C., Cluver, M. J., Chinsamy, A., & Reddy, B. D. (2013). Anatomical plasticity in the snout of Lystrosaurus. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 139–149). Dordrecht: Springer.Google Scholar
- Jenkins, I., Thomason, J. J., & Norman, D. B. (2002). Primates and engineering principles: Applications to craniodental mechanisms in ancient terrestrial predators. Senckenbergiana Lethaea, 82, 223–240.CrossRefGoogle Scholar
- Kemp, T. S. (1982). Mammal-like reptiles and the origin of mammals. London: Academic Press.Google Scholar
- Kemp, T. S. (2005). The origin and evolution of mammals. Oxford: Oxford University Press.Google Scholar
- Kenyon, K. W. (1981). Sea Otter, Enhydra lutra (Linnaeus, 1758). In S. H. Ridgway & R. J. Harrison (Eds.), Handbook of marine mammals (Vol. 1, pp. 209–223). London: Academic Press.Google Scholar
- Kriloff, A., Germain, D., Canoville, A., Vincent, P., Sache, M., & Laurin, M. (2008). Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference. Journal of Evolutionary Biology, 21, 807–826.CrossRefGoogle Scholar
- Laurin, M., Girondot, M., & Loth, M.-M. (2004). The evolution of long bone microstructure and lifestyle in lissamphibians. Paleobiology, 30, 589–613.CrossRefGoogle Scholar
- Madar, S. I. (1998). Structural adaptations of early archaeocete long bones. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 353–377). New York: Plenum Press.CrossRefGoogle Scholar
- Maddin, H. C., & Reisz, R. R. (2007). The morphology of the terminal phalanges in Permo-Carboniferous synapids: An evolutionary perspective. Canadian Journal of Earth Sciences, 44, 267–274.CrossRefGoogle Scholar
- Maddin, H. C., Evans, D. C., & Reisz, R. R. (2006). An Early Permian varanodontine varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality of Oklahoma. Journal of Vertebrate Paleontology, 26, 957–966.CrossRefGoogle Scholar
- Marsh, O. C. (1878). Notice of new fossil reptiles. American Journal of Science, 15, 409–411.CrossRefGoogle Scholar
- Martens, T., Berman, D. S, Henrici, A. C., & Sumida, S. S. (2005). The Bromacker Quarry—the most important locality of Lower Permian terrestrial vertebrate fossils outside of North America. In S. G. Lucas & K. E. Zeigler (Eds.), The nonmarine Permian (pp. 67–69). New Mexico Museum of Natural History and Science Bulletin, 30.Google Scholar
- Massare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7, 121–137.CrossRefGoogle Scholar
- McHenry, C. R., Clausen, P. D., Daniel, W. J. T., Meers, M. B., & Pendharkar, A. (2006). Biomechanics of the rostrum in crocodilians: A comparative analysis using finite element modeling. The Anatomical Record Part A, 288A, 827–849.CrossRefGoogle Scholar
- McShea, D. W. (1992). A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society, 45, 39–55.CrossRefGoogle Scholar
- McShea, D. W. (1993). Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.CrossRefGoogle Scholar
- Nakajima, Y. (2010). Evaluating the utility of limb bone internal structure as an indicator for aquatic adaptation of Testudines. Abstract from the 2010 Annual Symposium of Vertebrate Palaeontology and Comparative Anatomy, Cambridge. http://www.svpca.org/general/pages/abstractPage.php?i=1540&r=talksAndPosters.php&y=2010.
- Northover, J., Rybczynski, N., & Schroder-Adams, C. (2010). Evidence for correlated evolution between long bone compactness, swimming behavior and body mass in Arctoidea (Mammalia: Carnivora). Program and Abstracts, Society of Vertebrate Paleontology Annual Meeting, Pittsburgh, Pennsylvania, 149A.Google Scholar
- Olson, E. C. (1941). New specimens of Permian vertebrates in Walker Museum. Journal of Geology, 49, 753–763.CrossRefGoogle Scholar
- Olson, E. C. (1952). The evolution of a Permian vertebrate chronofauna. Evolution, 6, 181–196.CrossRefGoogle Scholar
- Olson, E. C. (1961). The food chain and the origin of mammals. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie: Klasse der Wetenschappen, 1961, 97–116.Google Scholar
- Olson, E. C. (1962). Late Permian terrestrial vertebrates, U.S.A. and U.S.S.R. Transactions of the American Philosophical Society, New Series, 52, 1–224.CrossRefGoogle Scholar
- Olson, E. C. (1966). Community evolution and the origin of mammals. Ecology, 47, 291–302.CrossRefGoogle Scholar
- Olson, E. C. (1968). The family Caseidae. Fieldiana: Geology, 17, 225–349.Google Scholar
- Olson, E. C. (1977). Permian lake faunas: A study in coevolution. Journal of the Palaeontological Society of India, 20, 146–163.Google Scholar
- Olson, E. C. (1983). Coevolution or coadaptation? Permo-Carboniferous vertebrate chronofauna. In M. H. Nitecki (Ed.), Coevolution (pp. 307–338). Chicago: University of Chicago Press.Google Scholar
- Olson, E. C. (1985a). Permo-Carboniferous vertebrate communities. In J. T. Dutro & H. W. Pfefferkorn (Eds.), Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Compte Rendu 5: Paleontology, Paleoecology, Paleogeography (pp. 331–345). Carbondale: Southern Illinois University Press.Google Scholar
- Olson, E. C. (1985b). Nonmarine vertebrates and late Paleozoic climates. In J. T. Dutro & H. W. Pfefferkorn (Eds.), Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Compte Rendu 5: Paleontology, Paleoecology, Paleogeography (pp. 403–414). Carbondale: Southern Illinois University Press.Google Scholar
- Panko, L. J. (2001). Evolution and functional morphology of the axial skeleton in the Synapsida. Unpublished Ph.D. dissertation, University of Chicago.Google Scholar
- Paton, R. L. (1974). Lower Permian pelycosaurs from the English midlands. Palaeontology, 17, 541–552.Google Scholar
- Pierce, S. E., Clack, J. A., & Hutchinson, J. R. (2011). Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. Journal of Anatomy, 219, 502–514.CrossRefGoogle Scholar
- Rayfield, E. J., & Milner, A. C. (2008). Establishing a framework for archosaur cranial mechanics. Paleobiology, 34, 494–515.CrossRefGoogle Scholar
- Rayfield, E. J., Milner, A. C., Xuan, V. B., & Young, P. G. (2007). Functional morphology of spinosaur ‘crocodile mimic’ dinosaurs. Journal of Vertebrate Paleontology, 27, 892–901.CrossRefGoogle Scholar
- Reisz, R. R. (1986). Pelycosauria. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie (Vol. 17A). Stuttgart: Gustav Fischer Verlag.Google Scholar
- Reisz, R. R. (2005). Oromycter, a new caseid from the Lower Permian of Oklahoma. Journal of Vertebrate Paleontology, 25, 905–910.CrossRefGoogle Scholar
- Ritter, D. (1992). Lateral bending during lizard locomotion. Journal of Experimental Biology, 173, 1–9.Google Scholar
- Ritter, D. (1996). Axial muscle function during lizard locomotion. Journal of Experimental Biology, 199, 2499–2510.Google Scholar
- Romer, A. S. (1925). An ophiacodont reptile from the Permian of Kansas. Journal of Geology, 33, 173–182.CrossRefGoogle Scholar
- Romer, A. S. (1948). Ichthyosaur ancestors. American Journal of Science, 246, 109–121.CrossRefGoogle Scholar
- Romer, A. S. (1956). Osteology of the reptiles. Chicago: University of Chicago Press.Google Scholar
- Romer, A. S. (1957). Origin of the amniote egg. The Scientific Monthly, 85, 57–63.Google Scholar
- Romer, A. S. (1958). Tetrapod limbs and early tetrapod life. Evolution, 12, 365–369.CrossRefGoogle Scholar
- Romer, A. S., & Price, L. I. (1940). Review of the Pelycosauria. Geological Society of America Special Papers, 28, 1–538.Google Scholar
- Russell, A. P., & Bels, V. (2001). Biomechanics and kinematics of limb-based locomotion in lizards: Review, synthesis and prospectus. Comparative Biochemistry and Physiology Part A, 131, 89–112.CrossRefGoogle Scholar
- Samuels, J. X., & Van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.CrossRefGoogle Scholar
- Sullivan, C. S., & Reisz, R. R. (1999). First record of Seymouria (Vertebrata: Seymouriamorpha) from Early Permian fissure fills at Richards Spur, Oklahoma. Canadian Journal of Earth Sciences, 36, 1257–1266.CrossRefGoogle Scholar
- Sumida, S. S., & Modesto, S. (2001). A phylogenetic perspective on locomotory strategies in early amniotes. American Zoologist, 41, 586–597.CrossRefGoogle Scholar
- Taylor, M. A. (1994). Stone, bone, or blubber? Buoyancy control strategies in aquatic tetrapods. In L. Maddock, Q. Bone, & J. M. V. Rayner (Eds.), Mechanics and physiology of animal swimming (pp. 151–161). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Thewissen, J. G. M., & Fish, F. E. (1997). Locomotor evolution in the earliest cetaceans: Functional model, modern analogues, and paleontological evidence. Paleobiology, 23, 482–490.Google Scholar
- Thomason, J. J., & Russell, A. P. (1986). Mechanical factors in the evolution of the mammalian secondary palate: A theoretical analysis. Journal of Morphology, 189, 199–213.CrossRefGoogle Scholar
- Voight, S., Berman, D. S, & Henrici, A. C. (2007). First well-established trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology, 27, 553–570.CrossRefGoogle Scholar
- Webb, P. W. (1988). Simple physical principles and vertebrate aquatic locomotion. American Zoologist, 28, 709–725.Google Scholar
- Williams, T. M. (1983). Locomotion in the North American mink, a semi-aquatic mammal. I. Swimming energetics and body drag. Journal of Experimental Biology, 103, 155–168.Google Scholar
- Williston, S. W. (1911). American Permian vertebrates. Chicago: University of Chicago Press.CrossRefGoogle Scholar
- Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.CrossRefGoogle Scholar
- Williston, S. W., & Case, E. C. (1913). Description of a nearly complete skeleton of Ophiacodon Marsh. Carnegie Institute of Washington Publication, 181, 37–59.Google Scholar