Was Ophiacodon (Synapsida, Eupelycosauria) a Swimmer? A Test Using Vertebral Dimensions

Chapter

Abstract

Ophiacodon, a Permian synapsid, has been hypothesized to be semi-aquatic. This interpretation is based on a range of evidence, including observations of histology, phalangeal morphology, dentition, and taphonomy. However, many of these data are inconclusive or have been reinterpreted. Here we investigate whether the morphology of the axial skeleton in Ophiacodon displays specializations for aquatic locomotion. Qualitative and quantitative comparisons of Ophiacodon to extant terrestrial and semi-aquatic tetrapods demonstrate that the distribution of centrum lengths in its vertebral column is similar in some ways to those of extant semi-aquatic reptiles. However, other basal synapsids that are widely regarded as terrestrial show comparable patterns, and the correlation between swimming style and vertebral morphology in extant semi-aquatic tetrapods may be weaker than previously thought. Therefore, vertebral proportions provide little support for a semi-aquatic lifestyle in Ophiacodon. Given that most lines of evidence are equivocal at best, we suggest that future studies that consider the ecology of Ophiacodon use a terrestrial lifestyle as a null hypothesis.

Keywords

Permian Carboniferous  Centrum length Limb length Aquatic tetrapods Ophiacodontidae 

References

  1. Berman, D. S, Reisz, R. R., Bolt, J. R., & Scott, D. (1995). The cranial anatomy and relationships of the synapsid Varanosaurus (Eupelycosauria: Ophiacodontidae) from the early Permian of Texas and Oklahoma. Annals of Carnegie Museum, 64, 99–133.Google Scholar
  2. Berman, D. S, Henrici, A. C., Sumida, S. S., & Martens, T. (2000). Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of the paleoecology of the Bromacker Locality Assemblage. Journal of Vertebrate Paleontology, 20, 253–268.CrossRefGoogle Scholar
  3. Berman, D. S, Reisz, R. R., Martens, T., & Henrici, A. C. (2001). A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Canadian Journal of Earth Sciences, 38, 80–812.CrossRefGoogle Scholar
  4. Berman, D. S, Henrici, A. C., Kissel, R. A., Sumida, S. S., & Martens, T. (2004). A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of central Germany. Bulletin of Carnegie Museum of Natural History, 35, 1–36.CrossRefGoogle Scholar
  5. Berman, D. S, Henrici, A. C., Sumida, S. S., Martens, T., & Pelletier, V. (2013). First European record of a varanodontine (Synapsida: Varanopidae): Member of a unique Early Permian upland ecosystem, Tambach Basin, central Germany. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 69–86). Dordrecht: Springer.Google Scholar
  6. Braziatis, P. (1973). The identification of living crocodilians. Zoologica, 58, 59–101.Google Scholar
  7. Brinkman, D. (1988). Size-independent criteria for estimating relative age in Ophiacodon and Dimetrodon (Reptilia, Pelycosauria) from the Admiral and Lower Belle Plains Formations of West-Central Texas. Journal of Vertebrate Paleontology, 8, 172–180.CrossRefGoogle Scholar
  8. Buchholtz, E. A. (1998). Implications of vertebral morphology for locomotor evolution in early Cetacea. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 325–352). New York: Plenum Press.CrossRefGoogle Scholar
  9. Buchholtz, E. A. (2001a). Swimming styles in Jurassic ichthyosaurs. Journal of Vertebrate Paleontology, 21, 61–73.CrossRefGoogle Scholar
  10. Buchholtz, E. A. (2001b). Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). Journal of Zoology, 253, 175–190.CrossRefGoogle Scholar
  11. Buchholtz, E. A., & Schur, S. A. (2004). Vertebral osteology in Delphinidae (Cetacea). Zoological Journal of the Linnean Society, 140, 383–401.CrossRefGoogle Scholar
  12. Buchholtz, E. A., Wolkovitch, E. M., & Cleary, R. J. (2005). Vertebral osteology and complexity in Lagenorhynchus acutus (Delphinidae) with comparison to other delphinoid genera. Marine Mammal Science, 21, 411–428.CrossRefGoogle Scholar
  13. Buchholtz, E. A., Booth, A. C., & Webbink, K. E. (2007). Vertebral anatomy in the Florida Manatee, Trichechus manatus latirostris: A developmental and evolutionary analysis. The Anatomical Record, 290, 624–637.CrossRefGoogle Scholar
  14. Canoville, A., & Laurin, M. (2010). Evolution of humeral microanatomy and lifestyle in amniotes, an some comments on palaeobiological inferences. Biological Journal of the Linnean Society, 100, 384–406.CrossRefGoogle Scholar
  15. Carpenter, K. (2009). Role of lateral body bending in crocodylian track making. Ichnos, 16, 202–207.CrossRefGoogle Scholar
  16. Carroll, R. L. (1986). The skeletal anatomy and some aspects of the physiology of primitive reptiles. In N. Hotton, P. D. MacLean, J. J. Roth, & E. C. Roth (Eds.), The ecology and biology of mammal-like reptiles (pp. 25–45). Washington, DC: Smithsonian Institution Press.Google Scholar
  17. Case, E. C. (1907). Revision of the Pelycosauria of North America. Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
  18. Case, E. C. (1915). The Permo-Carboniferous red beds of North America and their vertebrate fauna. Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
  19. Cope, E. D. (1878). Descriptions of extinct Batrachia and Reptilia from the Permian formation of Texas. Proceedings of the American Philosophical Society, 17, 505–530.Google Scholar
  20. de Ricqlès, A. (1974). Recherches paléohistologiques sur les os longs des tétrapodes. IV—éothériodontes et pélycosaures. Annales de Paléontologie (Vertébratés), 60, 3–39.Google Scholar
  21. de Ricqlès, A. (1989). Les méchanismes hétérochroniques dans le retour des tétrapodes au Milieu aquatique. Geobios Mémoir Spécial, 12, 337–348.CrossRefGoogle Scholar
  22. de Ricqlès, A., & de Buffrénil, V. (2001). Bone histology, heterochronies and the return of tetrapods to life in water. In J. M. Mazin & V. de Buffrénil (Eds.), Secondary adaptation of tetrapods to life in water (pp. 289–310). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  23. Eberth, D. A., & Miall, A. D. (1991). Stratigraphy, sedimentology and evolution of a vertebrate-bearing, braided to anastomosed fluvial system, Cutler Formation (Permian-Pennsylvanian), north-central New Mexico. Sedimentary Geology, 72, 225–252.CrossRefGoogle Scholar
  24. Eberth, D. A., & Berman, D. S (1993). Stratigraphy, sedimentology, and vertebrate paleoecology of the Cutler Formation redbeds (Pennsylvanian-Permian) of north central New Mexico. In S. G. Lucas & J. Zidek (Eds.) Vertebrate Paleontology in New Mexico (pp. 33–48). New Mexico Museum of Natural History and Science 2.Google Scholar
  25. Eberth, D. A., Berman, D. S, Sumida, S. S., & Hopf, H. (2000). Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): The upland Holy Grail. Palaios, 15, 293–313.CrossRefGoogle Scholar
  26. Enlow, D. H., & Brown, S. O. (1957). A comparative histological study of fossil and recent bone tissues. Part II. Texas Journal of Science, 9, 186–214.Google Scholar
  27. Evans, D. C., Maddin, H. C., & Reisz, R. R. (2009). A re-evaluation of sphenacodontid synapsid material from the Lower Permian fissure fills near Richards Spur, Oklahoma. Palaeontology, 52, 219–227.CrossRefGoogle Scholar
  28. Fish, F. E. (1984). Kinematics of undulatory swimming in the American Alligator. Copeia, 4, 839–843.CrossRefGoogle Scholar
  29. Fish, F. E. (1993). Comparison of swimming kinematics in terrestrial and semiaquatic opossums. Journal of Mammalogy, 74, 275–284.CrossRefGoogle Scholar
  30. Fish, F. E. (1994). Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). Journal of Mammalogy, 75, 989–997.CrossRefGoogle Scholar
  31. Fish, F. E. (1996). Transitions from drag-based to lift-based propulsion in mammalian aquatic swimming. American Zoologist, 36, 628–641.Google Scholar
  32. Fish, F. E. (2001). A mechanism for evolutionary transition in swimming mode by mammals. In J. M. Mazin & V. de Buffrénil (Eds.), Secondary adaptation of tetrapods to life in water (pp. 261–287). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  33. Germain, D., & Laurin, M. (2005). Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda). Zoologica Scripta, 34, 335–350.CrossRefGoogle Scholar
  34. Gingerich, P. D. (1998). Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 423–449). New York: Plenum Press.CrossRefGoogle Scholar
  35. Gingerich, P. D. (2003). Land-to-sea transition in early whales: Evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology, 29, 429–454.CrossRefGoogle Scholar
  36. Girondot, M., & Laurin, M. (2003). Bone profiler: A tool to quantify, model, and statistically compare bone-section compactness. Journal of Vertebrate Paleontology, 23, 458–461.CrossRefGoogle Scholar
  37. Gould, S. J. (1965). Evolutionary patterns in pelycosaurian reptiles: A factor-analytic study. Evolution, 21, 385–401.CrossRefGoogle Scholar
  38. Hentz, T. F. (1988). Lithostratigraphy and paleoenvironments of upper Paleozoic continental red beds, north-central Texas: Bowie (new) and Wichita (revised) groups. University of Texas at Austin Bureau of Economic Geology Report of Investigations, 170, 1–55.Google Scholar
  39. Hentz, T. F. (1989). Depositional environments of the Early Permian coastal plain, north-cental Texas: A synopsis. In R. W. Hook (Ed.), Permo-Carboniferous vetebrate paleontology, lithostratigraphy, and depositional environments of North-Central Texas (pp. 22–39). 49th Annual Meeting of the Society of Vertebrate Paleontology, Field Trip Guidebook 2.Google Scholar
  40. Houssaye, A. (2009). “Pachyostosis” in aquatic amniotes: A review. Integrative Zoology, 4, 325–340.CrossRefGoogle Scholar
  41. Hunt, A. P., & Lucas, S. G. (1998). Vertebrate tracks and the myth of the belly-dragging, tail-dragging tetrapods of the late Paleozoic. In S. G. Lucas, J. W. Estep, & J. M. Hoffer (Eds.), Permian stratigraphy and paleontology of the Robledo Mountains, New Mexico (pp. 67–69). New Mexico Museum of Natural History and Science Bulletin, 12.Google Scholar
  42. Jasinoski, S. C., & Chinsamy-Turan, A. (2012). Biological inferences of the cranial microstructure of the dicynodonts Oudenodon and Lystrosaurus. In A. Chinsamy-Turan (Ed.), The Forerunners of mammals: Radiation, histology, biology (pp. 149–176). Bloomington: Indiana University Press.Google Scholar
  43. Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2009). Comparative feeding biomechanics of Lystrosaurus and the generalized dicynodont Oudenodon. Anatomical Record, 292, 862–874.CrossRefGoogle Scholar
  44. Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2010a). Functional implications of dicynodont cranial suture morphology. Journal of Morphology, 271, 705–728.Google Scholar
  45. Jasinoski, S. C., Rayfield, E. J., & Chinsamy, A. (2010b). Mechanics of the scarf premaxilla-nasal suture in the snout of Lystrosaurus. Journal of Vertebrate Paleontology, 30, 1283–1288.CrossRefGoogle Scholar
  46. Jasinoski, S. C., Cluver, M. J., Chinsamy, A., & Reddy, B. D. (2013). Anatomical plasticity in the snout of Lystrosaurus. In C. F. Kammerer, K. D. Angielczyk, & J. Fröbisch (Eds.), Early evolutionary history of the Synapsida (pp. 139–149). Dordrecht: Springer.Google Scholar
  47. Jenkins, I., Thomason, J. J., & Norman, D. B. (2002). Primates and engineering principles: Applications to craniodental mechanisms in ancient terrestrial predators. Senckenbergiana Lethaea, 82, 223–240.CrossRefGoogle Scholar
  48. Kemp, T. S. (1982). Mammal-like reptiles and the origin of mammals. London: Academic Press.Google Scholar
  49. Kemp, T. S. (2005). The origin and evolution of mammals. Oxford: Oxford University Press.Google Scholar
  50. Kenyon, K. W. (1981). Sea Otter, Enhydra lutra (Linnaeus, 1758). In S. H. Ridgway & R. J. Harrison (Eds.), Handbook of marine mammals (Vol. 1, pp. 209–223). London: Academic Press.Google Scholar
  51. Kriloff, A., Germain, D., Canoville, A., Vincent, P., Sache, M., & Laurin, M. (2008). Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference. Journal of Evolutionary Biology, 21, 807–826.CrossRefGoogle Scholar
  52. Laurin, M., Girondot, M., & Loth, M.-M. (2004). The evolution of long bone microstructure and lifestyle in lissamphibians. Paleobiology, 30, 589–613.CrossRefGoogle Scholar
  53. Madar, S. I. (1998). Structural adaptations of early archaeocete long bones. In J. G. M. Thewissen (Ed.), The emergence of whales: The evolutionary patterns in the origin of Cetacea (pp. 353–377). New York: Plenum Press.CrossRefGoogle Scholar
  54. Maddin, H. C., & Reisz, R. R. (2007). The morphology of the terminal phalanges in Permo-Carboniferous synapids: An evolutionary perspective. Canadian Journal of Earth Sciences, 44, 267–274.CrossRefGoogle Scholar
  55. Maddin, H. C., Evans, D. C., & Reisz, R. R. (2006). An Early Permian varanodontine varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality of Oklahoma. Journal of Vertebrate Paleontology, 26, 957–966.CrossRefGoogle Scholar
  56. Marsh, O. C. (1878). Notice of new fossil reptiles. American Journal of Science, 15, 409–411.CrossRefGoogle Scholar
  57. Martens, T., Berman, D. S, Henrici, A. C., & Sumida, S. S. (2005). The Bromacker Quarry—the most important locality of Lower Permian terrestrial vertebrate fossils outside of North America. In S. G. Lucas & K. E. Zeigler (Eds.), The nonmarine Permian (pp. 67–69). New Mexico Museum of Natural History and Science Bulletin, 30.Google Scholar
  58. Massare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7, 121–137.CrossRefGoogle Scholar
  59. McHenry, C. R., Clausen, P. D., Daniel, W. J. T., Meers, M. B., & Pendharkar, A. (2006). Biomechanics of the rostrum in crocodilians: A comparative analysis using finite element modeling. The Anatomical Record Part A, 288A, 827–849.CrossRefGoogle Scholar
  60. McShea, D. W. (1992). A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society, 45, 39–55.CrossRefGoogle Scholar
  61. McShea, D. W. (1993). Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.CrossRefGoogle Scholar
  62. Nakajima, Y. (2010). Evaluating the utility of limb bone internal structure as an indicator for aquatic adaptation of Testudines. Abstract from the 2010 Annual Symposium of Vertebrate Palaeontology and Comparative Anatomy, Cambridge. http://www.svpca.org/general/pages/abstractPage.php?i=1540&r=talksAndPosters.php&y=2010.
  63. Northover, J., Rybczynski, N., & Schroder-Adams, C. (2010). Evidence for correlated evolution between long bone compactness, swimming behavior and body mass in Arctoidea (Mammalia: Carnivora). Program and Abstracts, Society of Vertebrate Paleontology Annual Meeting, Pittsburgh, Pennsylvania, 149A.Google Scholar
  64. Olson, E. C. (1941). New specimens of Permian vertebrates in Walker Museum. Journal of Geology, 49, 753–763.CrossRefGoogle Scholar
  65. Olson, E. C. (1952). The evolution of a Permian vertebrate chronofauna. Evolution, 6, 181–196.CrossRefGoogle Scholar
  66. Olson, E. C. (1961). The food chain and the origin of mammals. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie: Klasse der Wetenschappen, 1961, 97–116.Google Scholar
  67. Olson, E. C. (1962). Late Permian terrestrial vertebrates, U.S.A. and U.S.S.R. Transactions of the American Philosophical Society, New Series, 52, 1–224.CrossRefGoogle Scholar
  68. Olson, E. C. (1966). Community evolution and the origin of mammals. Ecology, 47, 291–302.CrossRefGoogle Scholar
  69. Olson, E. C. (1968). The family Caseidae. Fieldiana: Geology, 17, 225–349.Google Scholar
  70. Olson, E. C. (1977). Permian lake faunas: A study in coevolution. Journal of the Palaeontological Society of India, 20, 146–163.Google Scholar
  71. Olson, E. C. (1983). Coevolution or coadaptation? Permo-Carboniferous vertebrate chronofauna. In M. H. Nitecki (Ed.), Coevolution (pp. 307–338). Chicago: University of Chicago Press.Google Scholar
  72. Olson, E. C. (1985a). Permo-Carboniferous vertebrate communities. In J. T. Dutro & H. W. Pfefferkorn (Eds.), Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Compte Rendu 5: Paleontology, Paleoecology, Paleogeography (pp. 331–345). Carbondale: Southern Illinois University Press.Google Scholar
  73. Olson, E. C. (1985b). Nonmarine vertebrates and late Paleozoic climates. In J. T. Dutro & H. W. Pfefferkorn (Eds.), Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère. Compte Rendu 5: Paleontology, Paleoecology, Paleogeography (pp. 403–414). Carbondale: Southern Illinois University Press.Google Scholar
  74. Panko, L. J. (2001). Evolution and functional morphology of the axial skeleton in the Synapsida. Unpublished Ph.D. dissertation, University of Chicago.Google Scholar
  75. Paton, R. L. (1974). Lower Permian pelycosaurs from the English midlands. Palaeontology, 17, 541–552.Google Scholar
  76. Pierce, S. E., Clack, J. A., & Hutchinson, J. R. (2011). Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. Journal of Anatomy, 219, 502–514.CrossRefGoogle Scholar
  77. Rayfield, E. J., & Milner, A. C. (2008). Establishing a framework for archosaur cranial mechanics. Paleobiology, 34, 494–515.CrossRefGoogle Scholar
  78. Rayfield, E. J., Milner, A. C., Xuan, V. B., & Young, P. G. (2007). Functional morphology of spinosaur ‘crocodile mimic’ dinosaurs. Journal of Vertebrate Paleontology, 27, 892–901.CrossRefGoogle Scholar
  79. Reisz, R. R. (1986). Pelycosauria. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie (Vol. 17A). Stuttgart: Gustav Fischer Verlag.Google Scholar
  80. Reisz, R. R. (2005). Oromycter, a new caseid from the Lower Permian of Oklahoma. Journal of Vertebrate Paleontology, 25, 905–910.CrossRefGoogle Scholar
  81. Ritter, D. (1992). Lateral bending during lizard locomotion. Journal of Experimental Biology, 173, 1–9.Google Scholar
  82. Ritter, D. (1996). Axial muscle function during lizard locomotion. Journal of Experimental Biology, 199, 2499–2510.Google Scholar
  83. Romer, A. S. (1925). An ophiacodont reptile from the Permian of Kansas. Journal of Geology, 33, 173–182.CrossRefGoogle Scholar
  84. Romer, A. S. (1948). Ichthyosaur ancestors. American Journal of Science, 246, 109–121.CrossRefGoogle Scholar
  85. Romer, A. S. (1956). Osteology of the reptiles. Chicago: University of Chicago Press.Google Scholar
  86. Romer, A. S. (1957). Origin of the amniote egg. The Scientific Monthly, 85, 57–63.Google Scholar
  87. Romer, A. S. (1958). Tetrapod limbs and early tetrapod life. Evolution, 12, 365–369.CrossRefGoogle Scholar
  88. Romer, A. S., & Price, L. I. (1940). Review of the Pelycosauria. Geological Society of America Special Papers, 28, 1–538.Google Scholar
  89. Russell, A. P., & Bels, V. (2001). Biomechanics and kinematics of limb-based locomotion in lizards: Review, synthesis and prospectus. Comparative Biochemistry and Physiology Part A, 131, 89–112.CrossRefGoogle Scholar
  90. Samuels, J. X., & Van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.CrossRefGoogle Scholar
  91. Sullivan, C. S., & Reisz, R. R. (1999). First record of Seymouria (Vertebrata: Seymouriamorpha) from Early Permian fissure fills at Richards Spur, Oklahoma. Canadian Journal of Earth Sciences, 36, 1257–1266.CrossRefGoogle Scholar
  92. Sumida, S. S., & Modesto, S. (2001). A phylogenetic perspective on locomotory strategies in early amniotes. American Zoologist, 41, 586–597.CrossRefGoogle Scholar
  93. Taylor, M. A. (1994). Stone, bone, or blubber? Buoyancy control strategies in aquatic tetrapods. In L. Maddock, Q. Bone, & J. M. V. Rayner (Eds.), Mechanics and physiology of animal swimming (pp. 151–161). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  94. Thewissen, J. G. M., & Fish, F. E. (1997). Locomotor evolution in the earliest cetaceans: Functional model, modern analogues, and paleontological evidence. Paleobiology, 23, 482–490.Google Scholar
  95. Thomason, J. J., & Russell, A. P. (1986). Mechanical factors in the evolution of the mammalian secondary palate: A theoretical analysis. Journal of Morphology, 189, 199–213.CrossRefGoogle Scholar
  96. Voight, S., Berman, D. S, & Henrici, A. C. (2007). First well-established trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology, 27, 553–570.CrossRefGoogle Scholar
  97. Webb, P. W. (1988). Simple physical principles and vertebrate aquatic locomotion. American Zoologist, 28, 709–725.Google Scholar
  98. Williams, T. M. (1983). Locomotion in the North American mink, a semi-aquatic mammal. I. Swimming energetics and body drag. Journal of Experimental Biology, 103, 155–168.Google Scholar
  99. Williston, S. W. (1911). American Permian vertebrates. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  100. Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  101. Williston, S. W., & Case, E. C. (1913). Description of a nearly complete skeleton of Ophiacodon Marsh. Carnegie Institute of Washington Publication, 181, 37–59.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Biological SciencesOhio UniversityAthensUSA
  2. 2.Department of GeologyField Museum of Natural HistoryChicagoUSA

Personalised recommendations