Computational Approaches for Reconstruction of Time-Varying Biological Networks from Omics Data

  • Vinay JethavaEmail author
  • Chiranjib Bhattacharyya
  • Devdatt Dubhashi


This chapter presents a survey of recent methods for reconstruction of time-varying biological networks such as gene interaction networks based on time series node observations (e.g. gene expressions) from a modeling perspective. Time series gene expression data has been extensively used for analysis of gene interaction networks, and studying the influence of regulatory relationships on different phenotypes. Traditional correlation and regression based methods have focussed on identifying a single interaction network based on time series data. However, interaction networks vary over time and in response to environmental and genetic stress during the course of the experiment. Identifying such time-varying networks promises new insight into transient interactions and their role in the biological process. A key challenge in inferring such networks is the problem of high-dimensional data i.e. the number of unknowns p is much larger than the number of observations n. We discuss the computational aspects of this problem and examine recent methods that have addressed this problem. These methods have modeled the relationship between the latent regulatory network and the observed time series data using the framework of probabilistic graphical models. A key advantage of this approach is natural interpretability of network reconstruction results; and easy incorporation of domain knowledge into the model. We also discuss methods that have addressed the problem of inferring such time-varying regulatory networks by integrating multiple sources or experiments including time series data from multiple perturbed networks. Finally, we mention software tools that implement some of the methods discussed in this chapter. With next generation sequencing promising yet further growth in publicly available -omics data, the potential of such methods is significant.


Time-varying networks Dynamic interactome Gene microarray expressions Probabilistic graphical models \(\ell _{1}\)-regularization Network reconstruction Integrative analysis Multiple networks 



Probabilistic Graphical Model


Gaussian Graphical Model


Hidden Markov Model


Bayesian Network


Dynamic Bayesian Network


Maximum Likelihood Estimate


Least Absolute Shrinkage and Selection Operator


Penalized Maximum Likelihood


Graphical LASSO (see LASSO)


KErnel-reweighted Logistic Regression


TEmporally Smoothed l1-regularized Logistic Regression


Network Embedded Temporal GEnerative Model for gene expression data


Exponential Random Graph Model


Protein-Protein Interaction


  1. 1.
    Ahmed A, Xing E (2009) Recovering time-varying networks of dependencies in social and biological studies. In: Proceedings of the National Academy of Sciences 106(29),11878–11883Google Scholar
  2. 2.
    Alon U (2007) An introduction to systems biology: design principles of biological circuits, vol. 10. CRC press, Boca Raton, USAGoogle Scholar
  3. 3.
    Ambroise C, Chiquet J, Matias C (2009) Inferring sparse Gaussian graphical models with latent structure. Electron J Stat 3:205–238CrossRefGoogle Scholar
  4. 4.
    Androulakis I, Yang E, Almon R (2007) Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng 9:205–228PubMedCrossRefGoogle Scholar
  5. 5.
    Arbeitman M, Furlong E, Imam F, Johnson E, Null B, Baker B, Krasnow M, Scott M, Davis R, White K (2002) Gene expression during the life cycle of drosophila melanogaster. Science 297(5590):2270–2275PubMedCrossRefGoogle Scholar
  6. 6.
    Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Banerjee O, El Ghaoui L, d’Aspremont A (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J Mach Learn Res 9:485–516Google Scholar
  8. 8.
    Barabási A, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113PubMedCrossRefGoogle Scholar
  9. 9.
    Barabasi L, Gulbahce N, Loscalso J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Buhl S (1993) On the existence of maximum likelihood estimators for graphical Gaussian models. Scand J Stat 20(3):263–270Google Scholar
  12. 12.
    Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods theory and applications. Springer, New York IncCrossRefGoogle Scholar
  13. 13.
    Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351CrossRefGoogle Scholar
  14. 14.
    Carroll S (2005) Evolution at two levels: on genes and form. PLoS Biol 3(7):e245PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Cipollina C, van den Brink J, Daran-Lapujade P, Pronk J, Porro D, de Winde J (2008) Saccharomyces cerevisiae sfp1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology 154(6):1686–1699PubMedCrossRefGoogle Scholar
  16. 16.
    Clarke R, Ressom H, Wang A, Xuan J, Liu M, Gehan E, Wang Y (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8(1):37–49PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Davidson E (2001) Genomic regulatory systems: development and evolution. Academic Press, London, UKGoogle Scholar
  18. 18.
    Dempster A (1972) Covariance selection. Biometrics, 28(1):157–175Google Scholar
  19. 19.
    Donoho D (2000) High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lect, 1–32.
  20. 20.
    Donoho D (2006) Compressed sensing. Inf Theor, IEEE Trans on 52(4):1289–1306CrossRefGoogle Scholar
  21. 21.
    Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the l 1-ball for learning in high dimensions. In: Proceedings of the 25th international conference on Machine learning, pp. 272–279. ACMGoogle Scholar
  22. 22.
    Ernst J, Nau G, Bar-Joseph Z (2005) Clustering short time series gene expression data. Bioinformatics 21(suppl 1):i159–i168PubMedCrossRefGoogle Scholar
  23. 23.
    Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning, 2 edn. Springer-Verlag, Springer series in statistics, 763 pGoogle Scholar
  25. 25.
    Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620PubMedCrossRefGoogle Scholar
  26. 26.
    Fu W, Song L, Xing E (2009) Dynamic mixed membership blockmodel for evolving networks. In: Proceedings of the 26th annual international conference on machine learning, pp 329–336. ACMGoogle Scholar
  27. 27.
    Gitter A, Lu Y, Bar-Joseph Z (2010) Computational methods for analyzing dynamic regulatory networks. Methods in molecular biology (Clifton, NJ) 674, 419Google Scholar
  28. 28.
    Glass L, Kaplan D (1993) Time series analysis of complex dynamics in physiology and medicine. Med Progr Technol 19:115–115Google Scholar
  29. 29.
    Guo F, Hanneke S, Fu W, Xing E (2007) Recovering temporally rewiring networks: a model-based approach. In: Proceedings of the 24th international conference on Machine learning, pp 321–328. ACMGoogle Scholar
  30. 30.
    Guo J, Levina E, Michailidis G, Zhu J (2011) Joint estimation of multiple graphical models. Biometrika 98(1):1–15PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hartemink A et al (2005) Reverse engineering gene regulatory networks. Nat Biotechnol 23(5):554–555PubMedCrossRefGoogle Scholar
  32. 32.
    de Hoon M, Imoto S, Miyano S (2002) Inferring gene regulatory networks from time-ordered gene expression data using differential equations. In: Discovery science, 283–288. SpringerGoogle Scholar
  33. 33.
    Hu H, Yan X, Huang Y, Han J, Zhou X (2005) Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21(suppl 1):i213–i221PubMedCrossRefGoogle Scholar
  34. 34.
    Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. In: Proceedings of the National Academy of Sciences 98(8):4569Google Scholar
  36. 36.
    Jethava V, Bhattacharyya C, Dubhashi D, Vemuri G (2011) Netgem:network embedded temporal generative model for gene expression data. BMC Bioinform 12(1):327CrossRefGoogle Scholar
  37. 37.
    Kim S, Imoto S, Miyano S (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1):57–65PubMedCrossRefGoogle Scholar
  38. 38.
    Koh K, Kim S, Boyd S (2007) An interior-point method for large-scale l1-regularized logistic regression. J Mach Learn Res 8(8):1519–1555Google Scholar
  39. 39.
    Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. The MIT Press, Cambridge, MAGoogle Scholar
  40. 40.
    Lam C, Fan J (2009) Sparsistency and rates of convergence in large covariance matrix estimation. Ann Stat 37(6B), 4254Google Scholar
  41. 41.
    Lauritzen S (1996) Graphical models, vol 17. Oxford University Press, USAGoogle Scholar
  42. 42.
    Lin C, Weng R, Keerthi S (2008) Trust region newton method for logistic regression. J Mach Learn Res 9:627–650Google Scholar
  43. 43.
    Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312PubMedCrossRefGoogle Scholar
  44. 44.
    Ma S, Gong Q, Bohnert H (2007) An arabidopsis gene network based on the graphical Gaussian model. Genome Res 17(11):1614–1625PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. Ann Stat 34(3):1436–1462CrossRefGoogle Scholar
  46. 46.
    Mewes H, Frishman D, Gruber C, Geier B, Haase D, Kaps A, Lemcke K, Mannhaupt G, Pfeiffer F, Schüller C et al (2000) Mips: a database for genomes and protein sequences. Nucleic Acids Res 28(1):37–40PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Parisi G, Shankar R (1988) Statistical field theory. Phys Today 41:110CrossRefGoogle Scholar
  48. 48.
    Peer D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(suppl 1), S215–S224Google Scholar
  49. 49.
    Perrin B, Ralaivola L, Mazurie A, Bottani S, Mallet J, dAlche Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl 2), ii138-ii148 .Google Scholar
  50. 50.
    Przytycka T, Singh M, Slonim D (2010) Toward the dynamic interactome: it’s about time. Briefings Bioinform 11(1):15–29CrossRefGoogle Scholar
  51. 51.
    Ravikumar P, Wainwright M, Lafferty J (2010) High-dimensional ising model selection using 1-regularized logistic regression. Ann Stat 38(3):1287–1319CrossRefGoogle Scholar
  52. 52.
    Robins G, Pattison P, Kalish Y, Lusher D (2007) An introduction to exponential random graph \(p^*\) models for social networks. Soc Netw 29(2):173–191CrossRefGoogle Scholar
  53. 53.
    Rothman A, Bickel P, Levina E, Zhu J (2008) Sparse permutation invariant covariance estimation. Electron J Stat 2:494–515CrossRefGoogle Scholar
  54. 54.
    Sachs K, Perez O, Pe’er D, Lauffenburger D, Nolan G (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science’s STKE 308(5721), 523Google Scholar
  55. 55.
    Schadt E (2009) Molecular networks as sensors and drivers of common human diseases. Nature 416:218–223CrossRefGoogle Scholar
  56. 56.
    Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764PubMedCrossRefGoogle Scholar
  57. 57.
    Schliep A, Schönhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(suppl 1):i255–i263PubMedCrossRefGoogle Scholar
  58. 58.
    Shermin A, Orgun M (2009) Using dynamic bayesian networks to infer gene regulatory networks from expression profiles. In: Proceedings of the 2009 ACM symposium on applied computing, 799–803. ACMGoogle Scholar
  59. 59.
    Song L, Kolar M, Xing E (2009) Keller: estimating time-varying interactions between genes. Bioinformatics 25(12):i128–i136PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Soranzo N, Bianconi G, Altafini C (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23(13):1640–1647PubMedCrossRefGoogle Scholar
  61. 61.
    Speed T, Kiiveri H (1986) Gaussian Markov distributions over finite graphs. Ann Stat 14(1):138–150CrossRefGoogle Scholar
  62. 62.
    Tegner J, Yeung M, Hasty J, Collins J (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. In: Proceedings of the National Academy of Sciences 100(10):5944Google Scholar
  63. 63.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc. Series B (Methodological) 58(1):267–288Google Scholar
  64. 64.
    Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P et al (2000) A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770):623–627PubMedCrossRefGoogle Scholar
  65. 65.
    Wainwright M, Ravikumar P, Lafferty J (2007) High-dimensional graphical model selection using 1~ 1-regularized logistic regression. Advances in neural information processing systems 19:1465Google Scholar
  66. 66.
    Werhli A, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22(20):2523–2531PubMedCrossRefGoogle Scholar
  67. 67.
    Wille A, Zimmermann P, Vranová E, Fürholz A, Laule O, Bleuler S, Hennig L, Prelic A, Von Rohr P, Thiele L et al (2004) Sparse graphical Gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol 5(11):R92PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Workman C, Mak H, McCuine S, Tagne J, Agarwal M, Ozier O, Begley T, Samson L, Ideker T (2006) A systems approach to mapping dna damage response pathways. Science’s STKE 312(5776):1054Google Scholar
  69. 69.
    Yeang C, Mak H, McCuine S, Workman C, Jaakkola T, Ideker T (2005) Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol 6(7):R62PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Yeung M, Tegnér J, Collins J (2002) Reverse engineering gene networks using singular value decomposition and robust regression. In: Proceedings of the National Academy of Sciences 99(9):6163Google Scholar
  71. 71.
    Yuan M, Lin Y (2007) Model selection and estimation in the Gaussian graphical model. Biometrika 94(1):19–35CrossRefGoogle Scholar
  72. 72.
    Zhou S, Lafferty J, Wasserman L (2010) Time varying undirected graphs. Mach Learn 80(2):295–319CrossRefGoogle Scholar
  73. 73.
    Zou M, Conzen S (2005) A new dynamic Bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1):71–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Vinay Jethava
    • 1
    Email author
  • Chiranjib Bhattacharyya
    • 2
  • Devdatt Dubhashi
    • 1
  1. 1.Chalmers University of TechnologyGöteborgSweden
  2. 2.Indian Institute of ScienceBangaloreIndia

Personalised recommendations