Chaperonin 10, a Pro- and Anti-inflammatory Host Modulator

Chapter
Part of the Heat Shock Proteins book series (HESP, volume 7)

Abstract

Chaperonin(Cpn) 10 is a 10 kDa heat shock protein/cell stress protein which has an extraordinary range of biologically important activities. Human Cpn10 is found in the sera of pregnant women and pregnant animals. In this context it is known as Early Pregnancy Factor. It seems to be involved in immunosuppression which is associated with pregnancy and is clearly extracellular. Clinical trials with human Cpn10 have yielded contradictory results. Bacterial Cpn10 is involved in protein folding and in E. coli is known as GroES and is regarded as an intracellular protein. Bacterial Cpn10 is also highly immunogenic and stimulates powerful antibody and cellular immune responses. It also seems to be a virulence factor, possibly leading to a number of diseases such as spinal bone resorption in tuberculosis (Pott’s disease) and infertility in women (associated with Chlamydia spp infection). This chapter describes the characteristics of Cpn10 of both human and bacteria.

Keywords

Tuberculosis Patient Chlamydia Trachomatis Mycobacterium Bovis Coxiella Burnetii Fulminant Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amadori M, Archetti IL, Scaccaglia P, Modena D, Fossati G, Lucietto P, Mascagni P (1999) Chaperonin 10 of Mycobacterium tuberculosis induces a protective immune response to foot-and-­mouth disease virus. Arch Virol 144:905–919PubMedCrossRefGoogle Scholar
  2. Athanasas-Platsis S, Corcoran CM, Kaye PL, Cavanagh AC, Morton H (2000) Early pregnancy factor is required at two important stages of embryonic development in the mouse. Am J Reprod Immunol 43:223–233PubMedCrossRefGoogle Scholar
  3. Athanasas-Platsis S, Zhang B, Hillyard NC, Cavanagh AC, Csurhes PA, Morton H, McCombe PA (2003) Early pregnancy factor suppresses the infiltration of lymphocytes and macrophages in the spinal cord of rats during experimental autoimmune encephalomyelitis but has no effect on apoptosis. J Neurol Sci 214:27–36PubMedCrossRefGoogle Scholar
  4. Baird PN, Hall LM, Coates AR (1988) A major antigen from Mycobacterium tuberculosis which is homologous to the heat shock proteins groES from E. coli and the htpA gene product of Coxiella burnetii. Nucleic Acids Res 16:9047PubMedCrossRefGoogle Scholar
  5. Baird PN, Hall LM, Coates AR (1989) Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis. J Gen Microbiol 135:931–939PubMedGoogle Scholar
  6. Barnes PF, Mehra V, Rivoire B, Fong SJ, Brennan PJ, Voegtline MS, Minden P, Houghten RA, Bloom BR, Modlin RL (1992) Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis. J Immunol 148:1835–1840PubMedGoogle Scholar
  7. Betsou F, Sueur JM, Orfila J (1999) Serological investigation of Chlamydia trachomatis heat shock protein 10. Infect Immun 67:5243–5246PubMedGoogle Scholar
  8. Betsou F, Borrego MJ, Guillaume N, Catry MA, Romão S, Machado-Caetano JA, Sueur JM, Mention J, Faille N, Orfila J (2003a) Cross-reactivity between Chlamydia trachomatis heat shock protein 10 and early pregnancy factor. Clin Diagn Lab Immunol 10:446–450PubMedGoogle Scholar
  9. Betsou F, Sueur JM, Orfila J (2003b) Anti-Chlamydiae pneumoniae heat shock protein 10 antibodies in asthmatic adults. FEMS Immunol Med Microbiol 35:107–111PubMedCrossRefGoogle Scholar
  10. Borel N, Summersgill JT, Mukhopadhyay S, Miller RD, Ramirez JA, Pospischil A (2008) Evidence for persistent Chlamydia pneumoniae infection of human coronary atheromas. Atherosclerosis 199:154–161PubMedCrossRefGoogle Scholar
  11. Bose R, Cheng H, Sabbadini E, McCoshen J, MaHadevan MM, Fleetham J (1989) Purified human early pregnancy factor from preimplantation embryo possesses immunosuppresive properties. Am J Obstet Gynecol 160:954–960PubMedCrossRefGoogle Scholar
  12. Broadley SA, Vanags D, Williams B, Johnson B, Feeney D, Griffiths L, Shakib S, Brown G, Coulthard A, Mullins P, Kneebone C (2009) Results of a phase IIa clinical trial of an anti-­inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler 15:329–336PubMedCrossRefGoogle Scholar
  13. Cavanagh AC, Morton H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560PubMedCrossRefGoogle Scholar
  14. Chan E, Fossati G, Giuliani P, Lucietto P, Zaliani A, Coates ARM, Mascagni P (1995) Sequence and structural homologies between M. tuberculosis chaperonin 10 and the MHC Class I/II peptide binding cleft. Biochem Biophys Res Commun 211:14–20PubMedCrossRefGoogle Scholar
  15. Coates ARM, Hewitt J, Allen BW, Ivanyi J, Mitchison DA (1981) Antigenic diversity of Mycobacterium tuberculosis and Mycobacterium bovis detected by means of monoclonal antibodies. Lancet ii:167–169CrossRefGoogle Scholar
  16. Coates AR, Nicolai H, Pallen MJ, Guy A, Chaparas SD, Mitchison DA (1989) The 45 kilodalton molecule of Mycobacterium tuberculosis identified by immunoblotting and monoclonal antibodies as antigenic in patients with tuberculosis. Br J Exp Pathol 70:215–225PubMedGoogle Scholar
  17. Coates AR, Shinnick TM, Ellis RJ (1993) Chaperonin nomenclature. Mol Microbiol 8:787PubMedCrossRefGoogle Scholar
  18. Coates ARM, Cehovin A, Hu Y (2007) Chaperonin 60 and macrophage activation. The biology of extracellular molecular chaperones. Novartis Found Symp 291:160–172CrossRefGoogle Scholar
  19. Cocchiara R, Di Trapani G, Azzolina A, Geraci D (1986) Immunosuppressive effect of early pregnancy factor on early expression of cell surface membrane IgG. J Reprod Immunol 9:23–32PubMedCrossRefGoogle Scholar
  20. Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJ, Cappello F, La Rocca G (2010) Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 86:145–152PubMedCrossRefGoogle Scholar
  21. Davies E, Bacelar M, Marshall M, Johnson E, Wardle T, Andrew SJ (2006) Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol 145:183–189PubMedCrossRefGoogle Scholar
  22. Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385PubMedGoogle Scholar
  23. Ferrero RL, Thiberge JM, Kansau I, Wuscher N, Huerre M, Labigne A (1995) The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc Natl Acad Sci U S A 92:6499–6503PubMedCrossRefGoogle Scholar
  24. Fletcher BH, Cassady AI, Summers KM, Cavanagh AC (2001) The murine chaperonin 10 gene family contains an intronless, putative gene for early pregnancy factor, Cpn10-rs1. Mamm Genome 12:133–140PubMedCrossRefGoogle Scholar
  25. Fossati G, Izzo G, Rizzi E, Gancia E, Modena D, Moras ML, Niccolai N, Giannozzi E, Spiga O, Bono L, Marone P, Leone E, Mangili F, Harding S, Errington N, Walters C, Henderson B, Roberts MM, Coates AR, Casetta B, Mascagni P (2003) Mycobacterium tuberculosis chaperonin 10 is secreted in the macrophage phagosome: is secretion due to dissociation and adoption of a partially helical structure at the membrane? J Bacteriol 185:4256–4267PubMedCrossRefGoogle Scholar
  26. Friedland JS, Shattock R, Remick DG, Griffin GE (1993) Mycobacterial 65-kD heat shock protein induces release of proinflammatory cytokines from human monocytic cells. Clin Exp Immunol 91:58–62PubMedCrossRefGoogle Scholar
  27. Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47PubMedCrossRefGoogle Scholar
  28. Gophna U, Ron EZ (2003) Virulence and the heat shock response. Int J Med Microbiol 292:453–461PubMedCrossRefGoogle Scholar
  29. Harness J, Cavanagh A, Morton H, McCombe P (2003) A protective effect of early pregnancy factor on experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. J Neurol Sci 216:33–41PubMedCrossRefGoogle Scholar
  30. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334PubMedCrossRefGoogle Scholar
  31. Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14PubMedCrossRefGoogle Scholar
  32. Henderson B, Poole S, Wilson M (1996) Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev 60:316–341PubMedGoogle Scholar
  33. Henderson B, Calderwood SK, Coates AR, Cohen I, van Eden W, Lehner T, Pockley AG (2010a) Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141PubMedCrossRefGoogle Scholar
  34. Henderson B, Lund PA, Coates AR (2010b) Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis (Edinb) 90:119–124CrossRefGoogle Scholar
  35. Ho Y, Zhang YX (1994) The sequence of the groES and groEL genes from the mouse pneumonitis agent of Chlamydia trachomatis. Gene 141:143–144PubMedCrossRefGoogle Scholar
  36. Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS, Coates AR (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546PubMedCrossRefGoogle Scholar
  37. Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45PubMedCrossRefGoogle Scholar
  38. Hussain R, Shahid F, Zafar S, Dojki M, Dockrell HM (2004) Immune profiling of leprosy and tuberculosis patients to 15-mer peptides of Mycobacterium leprae and M. tuberculosis GroES in a BCG vaccinated area: implications for development of vaccine and diagnostic reagents. Immunology 111:462–471PubMedCrossRefGoogle Scholar
  39. Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13:11PubMedCrossRefGoogle Scholar
  40. Jha R, Vardhan H, Bas S, Salhan S, Mittal A (2009) Cervical epithelial cells from Chlamydia trachomatis-­infected sites co-express higher levels of chlamydial heat shock proteins 60 and 10 in infertile women than in fertile women. Gynecol Obstet Invest 68:160–166PubMedCrossRefGoogle Scholar
  41. Jha R, Vardhan H, Bas S, Salhan S, Mittal A (2011) Chlamydia trachomatis heat shock proteins 60 and 10 induce apoptosis in endocervical epithelial cells. Inflamm Res 60:69–78PubMedCrossRefGoogle Scholar
  42. Kalayoglu MV, Galvan C, Mahdi OS, Byrne GI, Mansour S (2003) Serological association between Chlamydia pneumoniae infection and age-related macular degeneration. Arch Ophthalmol 121:478–482PubMedCrossRefGoogle Scholar
  43. Karinen L, Pouta A, Hartikainen AL, Bloigu A, Paldanius M, Leinonen M, Saikku P, Järvelin MR (2004) Antibodies to Chlamydia trachomatis heat shock proteins Hsp60 and Hsp10 and subfertility in general population at age 31. Am J Reprod Immunol 52:291–297PubMedCrossRefGoogle Scholar
  44. Kirby AC, Meghji S, Nair SP, White P, Reddi K, Nishihara T, Nakashima K, Willis AC, Sim R, Wilson M et al (1995) The potent bone-resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. J Clin Invest 96:1185–1194PubMedCrossRefGoogle Scholar
  45. Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90:2608–2612PubMedCrossRefGoogle Scholar
  46. Kulkarni OP, Ryu M, Kantner C, Sárdy M, Naylor D, Lambert D, Brown R, Anders HJ (2012) Recombinant chaperonin 10 suppresses cutaneous lupus and lupus nephritis in MRL-(Fas)lpr mice. Nephrol Dial Transplant 27:1358–1367PubMedCrossRefGoogle Scholar
  47. Laminet AA, Ziegelhoffer T, Georgopoulos C, Plückthun A (1990) The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J 9:2315–2319PubMedGoogle Scholar
  48. LaVerda D, Albanese LN, Ruther PE, Morrison SG, Morrison RP, Ault KA, Byrne GI (2000) Seroreactivity to Chlamydia trachomatis Hsp10 correlates with severity of human genital tract disease. Infect Immun 68:303–309PubMedCrossRefGoogle Scholar
  49. Mascagni P, Tonolo M, Ball H, Lim M, Ellis RJ, Coates A (1991) Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones. FEBS Lett 286:201–203PubMedCrossRefGoogle Scholar
  50. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991PubMedCrossRefGoogle Scholar
  51. Meghji S, White PA, Nair SP, Reddi K, Heron K, Henderson B, Zaliani A, Fossati G, Mascagni P, Hunt JF, Roberts MM, Coates AR (1997) Mycobacterium tuberculosis chaperonin 10 stimulates bone resorption: a potential contributory factor in Pott's disease. J Exp Med 186:1241–1246PubMedCrossRefGoogle Scholar
  52. Minden P, Kelleher PJ, Freed JH, Nielsen LD, Brennan PJ, McPheron L, McClatchy JK (1984) Immunological evaluation of a component isolated from Mycobacterium bovis BCG with a monoclonal antibody to M. bovis BCG. Infect Immun 46:519–525PubMedGoogle Scholar
  53. Morton H (1984) Early pregnancy factor (EPF): a link between fertilization and immunomodulation. Aust J Biol Sci 37:393–407PubMedGoogle Scholar
  54. Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397PubMedCrossRefGoogle Scholar
  55. Morton H, Clunie GJ, Shaw FD (1979) A test for early pregnancy in sheep. Res Vet Sci 26:261–262PubMedGoogle Scholar
  56. Morton H, Cavanagh AC, Athanasas-Platsis S, Quinn KA, Rolfe BE (1992) Early pregnancy factor has immunosuppressive and growth factor properties. Reprod Fertil Dev 4:411–422PubMedCrossRefGoogle Scholar
  57. Morton H, McKay DA, Murphy RM, Somodevilla-Torres MJ, Swanson CE, Cassady AI, Summers KM, Cavanagh AC (2000) Production of a recombinant form of early pregnancy factor that can prolong allogeneic skin graft survival time in rats. Immunol Cell Biol 78:603–607PubMedCrossRefGoogle Scholar
  58. Noonan FP, Halliday WJ, Morton H, Clunie GJ (1979) Early pregnancy factor is immunosuppressive. Nature 278:649–651PubMedCrossRefGoogle Scholar
  59. Ragno S, Winrow VR, Mascagni P, Lucietto P, Di Pierro F, Morris CJ, Blake DR (1996) A synthetic 10-kD heat shock protein (hsp10) from Mycobacterium tuberculosis modulates adjuvant arthritis. Clin Exp Immunol 103:384–390PubMedCrossRefGoogle Scholar
  60. Riffo-Vasquez Y, Spina D, Page C, Tormay P, Singh M, Henderson B, Coates A (2004) Effect of Mycobacterium tuberculosis chaperonins on bronchial eosinophilia and hyper-responsiveness in a murine model of allergic inflammation. Clin Exp Allergy 34:712–729PubMedCrossRefGoogle Scholar
  61. Riffo-Vasquez Y, Coates AR, Page CP, Spina D (2012) Mycobacterium tuberculosis chaperonin 60.1 inhibits leukocyte diapedesis in a murine model of allergic lung inflammation. Am J Respir Cell Mol Biol 47:245–252PubMedCrossRefGoogle Scholar
  62. Roberts MM, Coker AR, Fossati G, Mascagni P, Coates AR, Wood SP (1999) Crystallization, x-ray diffraction and preliminary structure analysis of Mycobacterium tuberculosis chaperonin 10. Acta Crystallogr D Biol Crystallogr 55:910–914PubMedCrossRefGoogle Scholar
  63. Roberts MM, Coker AR, Fossati G, Mascagni P, Coates AR, Wood SP (2003) Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J Bacteriol 185:4172–4185PubMedCrossRefGoogle Scholar
  64. Rosenkrands I, Weldingh K, Ravn P, Brandt L, Hojrup P, Rasmussen PB, Coates AR, Singh M, Mascagni P, Andersen P (1999) Differential T-cell recognition of native and recombinant Mycobacterium tuberculosis GroES. Infect Immun 67:5552–5558PubMedGoogle Scholar
  65. Shinnick TM (1987) The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol 169:1080–1088PubMedGoogle Scholar
  66. Spandorfer SD, Neuer A, LaVerda D, Byrne G, Liu HC, Rosenwaks Z, Witkin SS (1999) Previously undetected Chlamydia trachomatis infection, immunity to heat shock proteins and tubal occlusion in women undergoing in vitro fertilization. Hum Reprod 14:60–64PubMedCrossRefGoogle Scholar
  67. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657PubMedCrossRefGoogle Scholar
  68. Takizawa S, Endo T, Wanjia X, Tanaka S, Takahashi M, Kobayashi T (2009) HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem Biophys Res Commun 386:192–196PubMedCrossRefGoogle Scholar
  69. Tilly K, Murialdo H, Georgopoulos C (1981) Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis. Proc Natl Acad Sci U S A 78:1629–1633PubMedCrossRefGoogle Scholar
  70. van Eden W (2008) XToll, a recombinant chaperonin 10 as an anti-inflammatory immunomodulator. Curr Opin Investig Drugs 9:523–533PubMedGoogle Scholar
  71. Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863PubMedCrossRefGoogle Scholar
  72. Vodkin MH, Williams JC (1988) A heat shock operon in Coxiella burnetii produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli. J Bacteriol 170:1227–1234PubMedGoogle Scholar
  73. Williams B, Vanags D, Hall S, McCormack C, Foley P, Weiss J, Johnson B, Latz E, Feeney D (2008) Efficacy and safety of chaperonin 10 in patients with moderate to severe plaque psoriasis: evidence of utility beyond a single indication. Arch Dermatol 144:683–685PubMedCrossRefGoogle Scholar
  74. Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW (1985) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci U S A 82:2583–2587PubMedCrossRefGoogle Scholar
  75. Zhang B, Harness J, Somodevilla-Torres MJ, Hillyard NC, Mould AW, Alewood D, Love SG, Alewood PF, Greer JM, Cavanagh AC, McCombe PA, Morton H (2000) Early pregnancy factor suppresses experimental autoimmune encephalomyelitis induced in Lewis rats with myelin basic protein and in SJL/J mice with myelin proteolipid protein peptide 139-151. J Neurol Sci 182:5–15PubMedCrossRefGoogle Scholar
  76. Zhang B, Walsh MD, Nguyen KB, Hillyard NC, Cavanagh AC, McCombe PA, Morton H (2003) Early pregnancy factor treatment suppresses the inflammatory response and adhesion molecule expression in the spinal cord of SJL/J mice with experimental autoimmune encephalomyelitis and the delayed-type hypersensitivity reaction to trinitrochlorobenzene in normal BALB/c mice. J Neurol Sci 212:37–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Medical Microbiology, Centre for Infection, Division of Clinical SciencesSt George’s, University of LondonLondonUK

Personalised recommendations