Prediction from Weeks to Decades

  • Ben Kirtman
  • David Anderson
  • Gilbert Brunet
  • In-Sik Kang
  • Adam A. Scaife
  • Doug Smith


This white paper is a synthesis of several recent workshops, reports and published literature on monthly to decadal climate prediction. The intent is to document: (i) the scientific basis for prediction from weeks to decades; (ii) current capabilities; and (iii) outstanding challenges. In terms of the scientific basis we described the various sources of predictability, e.g., the Madden Jullian Ocillation (MJO); Sudden Stratospheric Warmings; Annular Modes; El Niño and the Southern Oscillation (ENSO); Indian Ocean Dipole (IOD); Atlantic “Niño;” Atlantic gradient pattern; snow cover anomalies, soil moisture anomalies; sea-ice anomalies; Pacific Decadal Variability (PDV); Atlantic Multi-Decadal Variability (AMV); trend among others. Some of the outstanding challenges include how to evaluate and validate prediction systems, how to improve models and prediction systems (e.g., observations, data assimilation systems, ensemble strategies), the development of seamless prediction systems.


Seamless weather and climate prediction MJO ENSO Annular modes Pacific Decadal Variability Atlantic Multi-Decadal Variability Indian Ocean Dipole 



This manuscript was greatly improved by the comments and suggestions made by Julia Slingo. The authors also thank the anonymous reviewers for helpful comment on improving the manuscript. Ben Kirtman was supported by NOAA grants NA10OAR4320143 and NA10OAR4310203. Adam Scaife and Doug Smith were supported by the Joint DECC/Defra MetOffice Hadley Centre Climate Programme (GA01101).


  1. Alexander MA, Deser C (1994) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  2. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Climate 19:5816–5842CrossRefGoogle Scholar
  3. Anderson DLT et al (2011) Current capabilities in sub-seasonal to seasonal prediction.
  4. Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife AA, Xavier P, McLean P, Colman A, Cusack S (2011) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev 139(6):1891–1910. doi:10.1175/2010MWR3615.1 CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  6. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 244:581–584CrossRefGoogle Scholar
  7. Balmaseda MA, Davey MK, Anderson DLT (1995) Decadal and seasonal dependence of ENSO prediction skill. J Clim 8:2705–2715CrossRefGoogle Scholar
  8. Barnston AG, Glantz M, He Y (1999) Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Nino and the 1998 La Nina onset. Bull Am Meteorol Soc 80:217–243CrossRefGoogle Scholar
  9. Becker BD, Slingo JM, Ferranti L, Molteni F (2001) Seasonal predictability of the Indian Summer Monsoon: what role do land surface conditions play? Mausam 52:175–190Google Scholar
  10. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24:231–250. CrossRefGoogle Scholar
  11. Boer GJ (2004) Long time-scale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44. doi:10.1007/s00382-004-0419-8 CrossRefGoogle Scholar
  12. Boer GJ, Hamilton K (2008) QBO influence on extratropical predictive skill. Clim Dyn 31:987–1000CrossRefGoogle Scholar
  13. Brohan P, Kennedy J, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106CrossRefGoogle Scholar
  14. Brönimann S, Xoplaki E, Casty C, Pauling A, Luterbach J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197CrossRefGoogle Scholar
  15. Brown A, Sean M, Mike C, Brian G, John M, Ann S (2012) Unified modeling and prediction of weather and climate: a 25-year journey. Bull Am Meteorol Soc 93:1865–1877. doi:10.1175/BAMS-D-12-00018.1 CrossRefGoogle Scholar
  16. Brunet G, and 13 others (2010) Collaboration of the weather and climate communities to advance sub-seasonal to seasonal prediction. Bull Am Meteor Soc 91(10):1397–1406. doi: 10.1175/2010BAMS3013.1 Google Scholar
  17. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238. doi:10.1175/2008JCLI2549.1 CrossRefGoogle Scholar
  18. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527. doi:10.1038/nature07286 CrossRefGoogle Scholar
  19. Chang P, and Coauthors (2006) Climate fluctuations of tropical coupled systems – the role of ocean dynamics. J Clim 19:5122–5174Google Scholar
  20. Chen D, Xiaojun Yuan (2004) A Markov model for seasonal forecast of Antarctic sea ice. J Clim 17:3156–3168. doi:10.1175/1520-0442(2004) CrossRefGoogle Scholar
  21. Cohen J, Fletcher C (2007) Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J Clim 20:4118–4132CrossRefGoogle Scholar
  22. Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19:671–692. doi:10.1007/s00382-002-0254-8 CrossRefGoogle Scholar
  23. Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multi-model ensemble study. J Clim 19:1195–1203CrossRefGoogle Scholar
  24. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models In Ocean Circulation: mechanisms and impacts, Geophysical Monograph Series 173. American Geophysical Union, Washington, DC, pp 131–148Google Scholar
  25. Derome J, Brunet G, Plante A, Gagnon N, Boer GJ, Zwiers FW, Lambert SJ, Sheng J, Ritchie H (2001) Seasonal predictions based on two dynamical models. Atmos–Ocean 39:485–501CrossRefGoogle Scholar
  26. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during Boreal Winter since 1900. J Clim 17:3109–3124CrossRefGoogle Scholar
  27. DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon Weather Rev 133:2972–2995CrossRefGoogle Scholar
  28. Doblas-Reyes FJ, Hagedorn R, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting – II. Calibration and combination. Tellus A 57:234–252. doi:10.1111/j.1600-0870.2005.00104.x CrossRefGoogle Scholar
  29. Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37, L02709. doi:10.1029/2009GL041609 CrossRefGoogle Scholar
  30. Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude north Atlantic ocean. Geophys Res Lett 38:L14701. doi:10.1029/2011GL047949 CrossRefGoogle Scholar
  31. Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18:5224–5238CrossRefGoogle Scholar
  32. Ferranti L, Palmer TN, Molteni F, Klinker E (1990) Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J Atmos Sci 47(18):2177–2199CrossRefGoogle Scholar
  33. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099CrossRefGoogle Scholar
  34. Flugel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140CrossRefGoogle Scholar
  35. Folland CK, Scaife AA, Lindesay J, Stephenson D (2011) How predictable is European winter climate a season ahead? Int J Clim. doi:10.1002/joc.2314 Google Scholar
  36. Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152CrossRefGoogle Scholar
  37. Gottschalck J and 13 others (2010) A framework for assessing operational MJO forecasts: a project of the Clivar MJO working group. Bull Am Meteorol Soc. doi:10.1175/2010BAMS2816.1
  38. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181. doi:10.1126/science.275.5297.181 CrossRefGoogle Scholar
  39. Guilyardi E (2006) El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348. doi:10.1007/s00382-005-0084-6 CrossRefGoogle Scholar
  40. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. Tellus A 57:219–233. doi:10.1111/j.1600-0870.2005.00103.x CrossRefGoogle Scholar
  41. Hamilton E, Eade R, Graham RJ, Scaife AA, Smith DM, Maidens A, MacLachlan C (2012) Forecasting the number of extreme daily events on seasonal timescales. J Geophys Res 117:D03114. doi:10.1029/2011JD016541 CrossRefGoogle Scholar
  42. Hawkins E, Robson JI, Sutton R, Smith D, Keenlyside N (2011) Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim Dyn 37:2459–2509. doi:10.1029/2011JD016541 Google Scholar
  43. Higgins RW, Schemm J-KE, Shi W, Leetmaa A (2000) Extreme precipitation events in the western United States related to tropical forcing. J Clim 13:793–820CrossRefGoogle Scholar
  44. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  45. Huang BH, Kinter JL (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res-Oceans 107:20-1–20-26Google Scholar
  46. Huang BH, Schopf PS, Pan ZQ (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29Google Scholar
  47. Hudson D, Alves O, Hendon HH, Marshall AG (2011a) Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Q J R Meteorol Soc 137(656):673–689CrossRefGoogle Scholar
  48. Hudson D, Alves O, Hendon HH, Wang G (2011b) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155. doi:10.1007/s00382-010-0763-9 CrossRefGoogle Scholar
  49. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic oscillation: climatic significance and environmental impact, vol 134, Geophysical Monograph Series. AGU, Washington, DC, 279 pp, doi:10.1029/GM134 Google Scholar
  50. Hurrell J, Meehl GA, Bader D, Delworth T, Kirtman B, Wielicki B (2009) Climate system prediction. Bull Am Meteorol Soc 90(12):1819–1832. doi:10.1175/2009BAMS2752.1 CrossRefGoogle Scholar
  51. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2:32–36CrossRefGoogle Scholar
  52. Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757. doi:10.1038/ngeo1282 CrossRefGoogle Scholar
  53. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  54. Jhun J-G, Lee E-J (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726CrossRefGoogle Scholar
  55. Ji M, Leetmaa A, Kousky VE (1996) Coupled model forecasts of ENSO during the 1980s and 1990s at the National Meteorological Center. J Clim 9:3105–3120CrossRefGoogle Scholar
  56. Jin EK, and Coauthors (2008) Current status of ENSO prediction skill in coupled models. Clim Dyn 31(6):647–664Google Scholar
  57. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the Meridional Overturning Circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  58. Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Weather Rev 131:2324–2341CrossRefGoogle Scholar
  59. Kirtman BP, Dughong M (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930. doi:10.1175/2009MWR2672.1 Google Scholar
  60. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822CrossRefGoogle Scholar
  61. Kirtman BP, Pegion K, Kinter S (2005) Internal atmospheric dynamics and climate variability. J Atmos Sci 62:2220–2233CrossRefGoogle Scholar
  62. Kleeman R, Tang Y, Moore AM (2003) The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J Atmos Sci 60:2856–2868CrossRefGoogle Scholar
  63. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRefGoogle Scholar
  64. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233 CrossRefGoogle Scholar
  65. Knight JR, Folland CK, Scaife AA (2006) Climatic impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242 CrossRefGoogle Scholar
  66. Koster RD, Mahanama S, Yamada TJ, Balsamo G, Boisserie M, Dirmeyer P, Doblas-Reyes F, Gordon CT, Guo Z, Jeong J-H, Lawrence D, Li Z, Luo L et al (2010) The contribution of land surface initialization to subseasonal forecast skill: first results from the GLACE-2 project. Geophys Res Lett 37:L02402. doi:10.1029/2009GL04167 CrossRefGoogle Scholar
  67. Krishnamurthy V, Kirtman BP (2003) Variability of the Indian Ocean: relation to monsoon and ENSO. Q J R Meteorol Soc 129:1623–1646CrossRefGoogle Scholar
  68. Krishnamurti TN, Kishtawal CM, Zhan Zhang, LaRow T, Bachiochi D, Williford E, Gadgil S, Surendran S (2000) Multimodel ensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216. doi:10.1175/1520-0442(2000) CrossRefGoogle Scholar
  69. Kuroda Y, Kodera K (1999) Role of planetary waves in the stratosphere-troposphere coupled variability in the northern hemisphere winter. Geophys Res Lett 26(15):2375–2378CrossRefGoogle Scholar
  70. Kushnir Y, Robinson WA, Chang P, Robertson AW (2006) The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J Clim 19:5949–5970CrossRefGoogle Scholar
  71. Landsea CW, Knaff JA (2000) How much skill was there in forecasting the very strong 1997–98 El Nino? Bull Am Meteorol Soc 81:2107–2120CrossRefGoogle Scholar
  72. Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057CrossRefGoogle Scholar
  73. Lawrence D, Webster PJ (2002) The boreal summer intraseasonal oscillation and the South Asian monsoon. J Atmos Sci 59:1593–1606CrossRefGoogle Scholar
  74. Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi:10.1029/2009GL038932 CrossRefGoogle Scholar
  75. Lee TCK, Zwiers FW, Zhang X, Tsao M (2006) Evidence of decadal climate prediction skill resulting from changes in anthropogenic forcing. J Clim 19:5305–5318CrossRefGoogle Scholar
  76. Lengaigne ME, Guilyardi E, Boulanger J-P, Menkes C, Inness PM, Delecluse P, Cole J, Slingo JM (2004) Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim Dyn 23:6. doi:10.1007/s00382-004-0457-2 CrossRefGoogle Scholar
  77. Lin H, Brunet G (2009) The influence of the Madden-Julian Oscillation on Canadian wintertime surface air temperature. Mon Weather Rev 137:2250–2262CrossRefGoogle Scholar
  78. Lin H, Brunet G (2011) Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian Oscillation. Geophys Res Lett 38:L02802. doi:10.1029/2010GL046131 Google Scholar
  79. Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic Oscillation and the Madden-Julian Oscillation. J Clim 22:364–380CrossRefGoogle Scholar
  80. Lin H, Brunet G, Fontecilla J (2010a) Impact of the Madden-Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys Res Lett 37:L19803. doi:10.1029/2010GL044315 Google Scholar
  81. Lin H, Brunet G, Mo R (2010b) Impact of the Madden-Julian Oscillation on wintertime precipitation in Canada. Mon Weather Rev 138:3822–3839CrossRefGoogle Scholar
  82. Lin H, Brunet G, Fontecilla JS (2010c) Impact of the Madden Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys Res Lett 37:L19803Google Scholar
  83. Lorenz EN (1965) A study of the predictability of a 28-variable atmospheric model. Tellus 17:321–333CrossRefGoogle Scholar
  84. Luo J-J, Yamagata T, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  85. Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  86. Marshall AG, Scaife AA (2009) Impact of the QBO on surface winter climate. J Geophys Res 114:D18110. doi:10.1029/2009JD011737 CrossRefGoogle Scholar
  87. Marshall AG, Scaife AA, Ineson S (2009) Enhanced seasonal prediction of European winter warming following volcanic eruptions. J Climate 22:6168–6180CrossRefGoogle Scholar
  88. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science 335:76–79CrossRefGoogle Scholar
  89. McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Nat Acad Sci 101:4136–4141. doi:10.1073/pnas.0306738101 CrossRefGoogle Scholar
  90. Miller GH et al (2012) Abrupt onset of the little ice age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708. doi:10.1029/2011GL050168 CrossRefGoogle Scholar
  91. Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf stream on the troposphere. Nature 452:206–210CrossRefGoogle Scholar
  92. Mo KC, Higgins RW (1998) Tropical convection and precipitation regimes in the western United States. J Clim 11:2404–2423CrossRefGoogle Scholar
  93. Mochizuki T et al (2009) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci 107:1833–1837CrossRefGoogle Scholar
  94. Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil – observations, theory and numerical experiments with a general-circulation model. J Atmos Sci 38:2653–2675CrossRefGoogle Scholar
  95. Nakamura M, Enomoto T, Yamane S (2005) A simulation study of the 2003 heatwave in Europe. J Earth Simul 2:55–69Google Scholar
  96. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  97. Nobre P, Zebiak SE, Kirtman BP (2003) Local and remote sources of tropical Atlantic variability as inferred from the results of a hybrid ocean–atmosphere coupled model. Geophys Res Lett 30(5):8008. doi:10.1029/2002GL015785 CrossRefGoogle Scholar
  98. Osborne TM, Slingo JM, Lawrence D, Wheeler TR (2009) Examining the influence of growing crops on climate using a coupled crop-climate model. J Clim 22:1393–1411. doi:10.1175/2008JCLI2494.1 CrossRefGoogle Scholar
  99. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi:10.1038/NGEO955 Google Scholar
  100. Palmer TN, Brankovic C, Richardson DS (2000) A probability and decision-model analysis of PROVOST seasonal multimodel ensemble integrations. Q J R Meteorol Soc 126:2013–2034CrossRefGoogle Scholar
  101. Palmer TN, and Coauthors (2004) Development of a European multi-model ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872Google Scholar
  102. Palmer TN, Doblas-Reyes F, Weisheimer A, Rodwell M (2008) Toward seamless prediction. Calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 459–470. See also reply to Scaife et al. 2009 in Bull Am Meteorol Soc Oct 2009, 1551–1554. doi: 10.1175/2009BAMS2916.1
  103. Pegion K, Kirtman BP (2008) The impact of air-sea interactions on the predictability of the Tropical Intra-Seasonal Oscillation. J Clim 22:5870–5886CrossRefGoogle Scholar
  104. Pellerin PH, Ritchie FJ, Saucier F, Roy S, Desjardins MV, Lee V (2004) Impact of a two-way coupling between an atmospheric and an ocean-ice model over the Gulf of St. Lawrence. Mon Weather Rev 132(6):1379–1398CrossRefGoogle Scholar
  105. Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J Clim 11:483–496CrossRefGoogle Scholar
  106. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472CrossRefGoogle Scholar
  107. Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938CrossRefGoogle Scholar
  108. Pohlmann H, Smith DM, Balmaseda MA, da Costa ED, Keenlyside NS, Masina S, Matei D, Muller WA, Rogel P (2013) Skillful predictions of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Climate Dyn doi:10.1007/s00382-013-1663-6
  109. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  110. Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564CrossRefGoogle Scholar
  111. Rashid HA, Hendon HH, Wheeler MC, Alves O (2011) Prediction of the Madden-Julian Oscillation with the POAMA dynamical prediction system. Clim Dyn 36:649–661. doi:10.1007/s00382-010-0754-x CrossRefGoogle Scholar
  112. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  113. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  114. Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Global Precipitation Climatology Centre (GPCC), DWD, Internet publication, pp 1–8Google Scholar
  115. Saha S, and Coauthors (2006) The NCEP climate forecast system. J Climate 19:3483–3517. doi:10.1175/JCLI3812.1
  116. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  117. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Clim 21:72–83CrossRefGoogle Scholar
  118. Schubert SD, Suarez M, Pegion PJ, Koster RD, Bacmeister JT (2004) On the cause of the 1930s dustbowl. Science 33:1855–1859CrossRefGoogle Scholar
  119. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H (2011) Uncertainty in modeled arctic sea ice volume. J Geophys Res 117:C00D06. doi:10.1029/2011JC007084 CrossRefGoogle Scholar
  120. Shukla J, Hagedorn R, Miller M, Palmer TN, Hoskins B, Kinter J, Marotzke J, Slingo J (2009) Strategies: revolution in climate prediction is both necessary and possible: a declaration at the world modelling summit for climate prediction. Bull Am Meteor Soc 90:175–178. doi:10.1175/2008BAMS2759.1 CrossRefGoogle Scholar
  121. Shaffrey L, Stevens I, Norton W, Roberts M, Vidale PL, Harle J, Jrrar A, Stevens D, Woodage M, Demory M-E, Donners J, Clark D, Clayton A, Cole J, Wilson S, Connolley W, Davies T, Iwi A, Johns T, King J, New A, Slingo JM, Slingo A, Steenman-Clark L, Martin G (2008) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22:1861–1896CrossRefGoogle Scholar
  122. Shi Li, Hendon HH, Alves O, Jing-Jia Luo, Balmaseda M, Anderson D (2012) How predictable is the Indian ocean dipole? Mon Weather Rev 140(12):3867–3884CrossRefGoogle Scholar
  123. Shongwe ME, Ferro CAT, Coelho CAS, van Oldenborgh GJ (2007) Predictability of cold spring seasons in Europe. Mon Weather Rev 135:4185–4201. doi:10.1175/2007MWR2094.1 CrossRefGoogle Scholar
  124. Slingo JM, Palmer TN (2011) Uncertainty in weather and climate prediction. Philos Trans R Soc A 369(1956):4751–4767. doi:10.1098/rsta.2011.0161 Google Scholar
  125. Slingo JM, Rowell DP, Sperber KR, Nortley F (1999) On the predictability of the interannual behaviour of the Madden-Julian Oscillation and its relationship with El Nino. Q J R Meteorol Soc 125:583–609Google Scholar
  126. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799CrossRefGoogle Scholar
  127. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3:846–849. doi:10.1038/NGEO1004 CrossRefGoogle Scholar
  128. Smith DM, Scaife AA, Kirtman B (2012) What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ Res Lett 7:015602. doi:10.1088/1748-9326/7/1/015602 CrossRefGoogle Scholar
  129. Simmons AJ, Hollingsworth A (2002) Some aspects of the improvement in skill of numerical weather prediction. Q J R Meteorol Soc 128:647–677. doi:10.1256/003590002321042135 CrossRefGoogle Scholar
  130. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in the oceans. J Geophys Res 114:D16104. doi:10.1029/2008JD011673 CrossRefGoogle Scholar
  131. Stockdale T, Anderson D, Balmaseda M, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37(3–4):455–471CrossRefGoogle Scholar
  132. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  133. Takaya Y, Vitart F, Balsamo G, Balmaseda M, Leutbecher M, Molteni F (2010) Implementation of an ocean mixed layer model in IFS. ECMWF Tech Memo 622 (available from ECMWF Shinfield Park Reading RG2 9AX UNITED KINGDOM)Google Scholar
  134. Taws SL, Marsh R, Wells NC, Hirschi J (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett 38:L20601. doi:10.1029/2011GL048978 CrossRefGoogle Scholar
  135. Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14:445–466CrossRefGoogle Scholar
  136. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016. doi:10.1175/1520-0442(2000) CrossRefGoogle Scholar
  137. Timlin MS, Alexander MA, Deser C (2002) On the reemergence of North Atlantic SST anomalies. J Clim 15:2707–2712CrossRefGoogle Scholar
  138. Turner AG, Slingo JM (2011) Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM. Clim Dyn 36:1717–1735. doi:10.1007/s00382-010-0805-3 CrossRefGoogle Scholar
  139. Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO-Monsoon relationship and implications for predictability. Q J R Meteorol Soc 131:781–804CrossRefGoogle Scholar
  140. van Loon H, Meehl GA, Shea DJ (2007) Coupled air-sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112:D02108. doi:10.1029/2006JD007378 CrossRefGoogle Scholar
  141. Vecchi GA, Bond NA (2004) The Madden-Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys Res Lett 31:L04104. doi:10.1029/2003GL018645 CrossRefGoogle Scholar
  142. Vecchi GA, Harrison DE (2000) Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim 13:1814–1830CrossRefGoogle Scholar
  143. Vellinga M, Wu P (2004) Low-Latitude freshwater influence on centennial variability of the Atlantic Thermohaline Circulation. J Clim 17:4498–4511CrossRefGoogle Scholar
  144. Vitart F (2009) Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys Res Lett 36:L15802. doi:10.1029/2009GL039089 CrossRefGoogle Scholar
  145. Vitart F, Molteni F (2010) Simulation of the Madden-Julian Oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc 136:842–855. doi:10.1002/qj.623 CrossRefGoogle Scholar
  146. Wajsowicz RC (2007) Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: potential predictability and barriers. J Clim 20:3320–3343CrossRefGoogle Scholar
  147. Waliser D, and others (2009) MJO simulation diagnostics. J Climate 22:3006–3030Google Scholar
  148. Walker GT, Bliss EW (1932) World weather V. Mem R Meteorol Soc 4(36):53–84Google Scholar
  149. Wang Bin, and 27 others (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn 33:93–117. doi:10.1007/s00382-008-0460-0
  150. Wang Wanqiu, Mingyue Chen, Kumar A (2010) An assessment of the CFS real-time seasonal forecasts. Weather Forecast 25:950–969. doi:10.1175/2010WAF2222345.1 CrossRefGoogle Scholar
  151. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRefGoogle Scholar
  152. Wheeler M, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden-Julian oscillation on Australian Rainfall and circulation. J Clim 22:1482–1498CrossRefGoogle Scholar
  153. Wittenberg AT, Rosati A, Ngar-Cheung Lau, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722. doi:10.1175/JCLI3631.1 CrossRefGoogle Scholar
  154. Woolnough SJ, Vitart F, Balmaseda MA (2007) The role of the ocean in the Madden-Julian Oscillation: implications for MJO prediction. Q J R Meteorol Soc 133:117–128CrossRefGoogle Scholar
  155. Wu Q, Zhang X (2010) Observed forcing–feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J Geophys Res 115, D14119CrossRefGoogle Scholar
  156. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res-Atmos 113Google Scholar
  157. Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286(5444):1537–1540. doi:10.1126/science.286.5444.1537 CrossRefGoogle Scholar
  158. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267 CrossRefGoogle Scholar
  159. Zhao M, Hendon HH (2009) Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q J R Meteorol Soc 135:337–352CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ben Kirtman
    • 1
  • David Anderson
    • 2
  • Gilbert Brunet
    • 3
  • In-Sik Kang
    • 4
  • Adam A. Scaife
    • 5
  • Doug Smith
    • 5
  1. 1.RSMAS/MPOUniversity of MiamiMiamiUSA
  2. 2.The IDR GroupLamb Chambers, the Chambers of John Cherry QCLondonUK
  3. 3.Meteorological Research Division (MRD)/ASTD, Environment CanadaDorvalCanada
  4. 4.Atmospheric Science Program, School of Earth and Environmental SciencesSoul National UniversitySeoulKorea
  5. 5.Met Office, Hadley CenterExeterUK

Personalised recommendations