Improving Understanding of the Global Hydrologic Cycle

Observation and Analysis of the Climate System: The Global Water Cycle
  • Peter H. GleickEmail author
  • Heather Cooley
  • James S. Famiglietti
  • Dennis P. Lettenmaier
  • Taikan Oki
  • Charles J. Vörösmarty
  • Eric F. Wood


Understanding the complexity of the hydrological cycle is central to understanding a wide range of other planetary geological, atmospheric, chemical, and physical processes. Water is also central to other core economic, social, and political issues such as poverty, health, hunger, environmental sustainability, conflict, and economic prosperity. As society seeks to meet demands for goods and services for a growing population, we must improve our understanding of the fundamental science of the hydrological cycle, its links with related global processes, and the role it plays in ecological and societal well-being. At the same time, human influences on the character and dynamics of the water cycle are growing rapidly. Central to solving these challenges is the need to improve our systems for managing, sharing, and analyzing all kinds of water data, and our ability to model and forecast aspects of both the hydrological cycle and the systems we put in place to manage human demands for water. We need to improve our understanding of each of the components of the hydrological water balance at all scales, and to understand the spatial and temporal variability in the components of the water cycle. This chapter provides a short summary of current WCRP efforts and addresses four primary research challenges:
  1. 1.

    The collection of more comprehensive data and information on all aspects of the hydrologic cycle and human uses of water, at enhanced spatial and temporal resolution and increased precision;

  2. 2.

    Improved management and distribution of these data;

  3. 3.

    Improved representation of the anthropogenic manipulations of the water cycle in the coupled land-atmosphere-ocean models used to forecast climate variations and change at both seasonal to interannual, and decade to century, time scales; and

  4. 4.

    Expanded research at the intersection of hydrological sciences and the technical, social, economic, and political aspects of freshwater management and use.



Hydrologic cycle Water Water systems Climate Modeling Water balance Data GEWEX GRACE Water-energy nexus 



The authors express our gratitude for Ms. Misako Kachi for Box 3.


  1. Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrol Sci J 48:339–348CrossRefGoogle Scholar
  2. Alcamo JH, Grassl H, Hoff P, Kabat F, Lansigan R, Lawford D, Lettenmaier, Lévêque C, Meybeck M, Naiman R, Pahl-Wostl C, Vörösmarty C (2005) Science framework and implementation activities, global water system project, Bonn, 76 ppGoogle Scholar
  3. Alcamo J, Flörke M, Mӓrker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52(2):247–275CrossRefGoogle Scholar
  4. Allan RP, Soden BJ (2007) Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys Res Lett 34:L18705. doi: 10.1029/2007GL031460 CrossRefGoogle Scholar
  5. American Water Works Association (AWWA) (1997) Climate change and water resources. J Am Water Works Assoc 89(11):107–110Google Scholar
  6. Amiotte-Suchet P, Probst J-L, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cycles 17:7.1–7.13CrossRefGoogle Scholar
  7. Baumgartner F, Reichel E (1975) The world water balance: mean annual global, continental and maritime precipitation, evaporation and runoff. Elsevier, München/WienGoogle Scholar
  8. Behera S, Yamagata T (2010) Imprint of the El Niño Modoki on decadal sea level changes. Gepophys Res Lett 37:L23702. doi: 10.1029/2010GL045936 Google Scholar
  9. Boyer TP, Levitus S, Antonov JI, Locarnini RA, Garcia HE (2005) Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett 32, L01604. doi: 10.1029/2004GL021791 CrossRefGoogle Scholar
  10. California Department of Water Resources (2009) California water plan update 2009. Sacramento.
  11. Chao BF (1995) Anthropogenic impact on global geodynamics due to reservoir water impoundment. Geophys Res Lett 22:3529–3532CrossRefGoogle Scholar
  12. Chao BF, O’Connor WP (1988) Global surface-water-induced seasonal variations in the Earth’s rotation and gravitational field. Geophys J 94(2):263–270. doi: 10.1111/j.1365-246X.1988.tb05900.x CrossRefGoogle Scholar
  13. Cooley H, Donnelly K (2012) Hydraulic fracturing and water resources: separating the frack from the fiction. Pacific Institute, Oakland, 34 ppGoogle Scholar
  14. Cooley H, Fulton J, Gleick PH (2011) Water for energy: future water needs for electricity in the intermountain west. Pacific Institute, Oakland, 63 ppGoogle Scholar
  15. Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3(2):445–478CrossRefGoogle Scholar
  16. Dirmeyer PA, Gao XA, Zhao M, Guo ZC, Oki T, Hanasaki N (2006) GSWP-2 multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87:1381–1397CrossRefGoogle Scholar
  17. Durack PJ, Wijffels SE (2010) Fifty year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4,342–4,362CrossRefGoogle Scholar
  18. Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950–2000. Science 336(6080):455–458. doi: 10.1126/science 1212222 CrossRefGoogle Scholar
  19. Falkenmark M, Rockström J (2004) Balancing water for humans and nature. Earthscan, London, 247ppGoogle Scholar
  20. Famiglietti JS (2004) Remote sensing of terrestrial water storage, soil moisture and surface waters. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics, vol 150, Geophysical monograph series. American Geophysical Union [S.l.]/International Union of Geodesy and Geophysics, Washington, DC, pp 197–207CrossRefGoogle Scholar
  21. Famiglietti J, Murdoch L, Lakshmi V, Hooper R (2009) Rationale and strategy for a community modeling platform in the hydrologic sciences, Community Modeling in Hydrologic Science. Report of the CHyMP scoping workshop held March 26–27, 2008, Washington, DC, CUAHSI technical report #8, April 12. doi:10.4211/techrpts.200911.tr8Google Scholar
  22. Famiglietti J, Murdoch L, Lakshmi V, Hooper R (2010) Towards a framework for community modeling in hydrologic science. Report from the 2nd workshop on a Community Hydrologic Modeling Platform (CHyMP): blueprint for a community hydrologic modeling platform, Memphis, CUAHSI Technical report #9, March 31– April 1, 2009. doi:10.4211/techrpts.20100616.tr9
  23. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011a) Satellites measure recent rates of groundwater depletion in California’s Central Valley, Geophys Res Lett 38, L03403. doi: 10.1029/2010GL046442 CrossRefGoogle Scholar
  24. Famiglietti J, Murdoch L, Lakshmi V, Arrigo J (2011b) Establishing a framework for community modeling in hydrologic science. Report from the 34d workshop on a Community Hydrologic Modeling Platform (CHyMP): a strategic and implementation plan, CUAHSI technical report #10, Irvine, March 15–17, 2011Google Scholar
  25. FC-GWSP (Framing Committee of the Global Water System Project) (2004a) Humans transforming the global water system. Eos AGU Trans 85(509):513–514Google Scholar
  26. FC-GWSP (Framing Committee of the Global Water System Project) (2004b) The global water system project: science framework and implementation activities. Earth System Science Partnership Project. Global Water System Project Office, BonnGoogle Scholar
  27. Fekete BM, Vörösmarty CJ, Grabs W (2002) High resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cycles 6(3):1. doi: 10.1029/1999GB001254 Google Scholar
  28. Fekete BM, Wisser D, Kroeze C, Mayorga E, Bouwman L, Wollheim WM, Vorosmarty C (2010) Millennium Ecosystem Assessment scenario drivers (1970–2050): climate and hydrological alterations. Global Biogeochem Cycles 24:GB0A12. doi: 10.1029/2009GB003593 CrossRefGoogle Scholar
  29. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycle: past, present and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  30. Gleick PH (2000) Water: the potential consequences of climate variability and change for the water resources of the United States. U.S. Global Change Research Program, Washington, DC, 151 ppGoogle Scholar
  31. Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–1528CrossRefGoogle Scholar
  32. Gleick PH, Palaniappan M (2010) Peak water: conceptual and practical limits to freshwater withdrawal and use. Proc Natl Acad Sci (PNAS) 107(25):11155–11162.
  33. Gleick PH, Christian-Smith J, Cooley H (2011) Water-use efficiency and productivity: rethinking the basin approach. Water Int 36(7):784–798. doi: 10.1080/02508060.2011.631873, Scholar
  34. Group on Earth Observations (GEO) (2007) Strategic guidance for current and potential contributors to GEOSS.
  35. Group on Earth Observations (GEO) (2009) Implementation guidelines for the GEOSS data sharing principles. Group on Earth Observations, GenevaGoogle Scholar
  36. Haddeland I, Lettenmaier DP, Skaugen T (2006a) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J Hydrol 324:210–223CrossRefGoogle Scholar
  37. Haddeland I, Skaugen T, Lettenmaier DP (2006b) Anthropogenic impacts on continental surface water fluxes. Geophys Res Lett 33, L08406. doi: 10.1029/2006GL026047 CrossRefGoogle Scholar
  38. Haddeland I, Skaugen T, Lettenmaier DP (2007) Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol Earth Syst Sci 11(2):1035–1045CrossRefGoogle Scholar
  39. Haddeland I, Clark D, Franssen W, Ludwig F, Voss F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multi-model estimate of the terrestrial global water balance: setup and first results. J Hydrometeorol 12:869–884. doi: 10.1175/2011JHM1324.1 CrossRefGoogle Scholar
  40. Hanasaki N, Kanae S, Oki T (2006) A reservoir operation scheme for global river routing models. J Hydrol 327:22–41CrossRefGoogle Scholar
  41. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008a) An integrated model for the assessment of global water resources – Part 1: model description and input meteorological forcing. Hydrol Earth Syst Sci 12:1007–1025CrossRefGoogle Scholar
  42. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y, Tanaka K (2008b) An integrated model for the assessment of global water resources – Part 2: applications and assessments. Hydrol Earth Syst Sci 12:1027–1037CrossRefGoogle Scholar
  43. Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384:232–244CrossRefGoogle Scholar
  44. Harmon T, Ambrose R, Gilbert R, Fisher J, Stealey M (2007) High-resolution river hydraulic and water quality characteristics using rapidly deployable networked infomechanical systems. Environ Eng Sci 24(2):151–159CrossRefGoogle Scholar
  45. He B, Kanae S, Oki T, Hirabayashi Y, Yamashiki Y, Takara K (2011) Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Res 45(8):2573–2586CrossRefGoogle Scholar
  46. Hirschboeck KK (2009) Future hydroclimatology and the research challenges of a post-stationary world. J Contemp Water Res Educ 142(1):4–9. Google Scholar
  47. Hornberger C (2001) A plan for a new science initiative on the global water cycle. Chapter 5: An integrated water cycle science plan. Report to the USGCRP from the Water Cycle Study Group.
  48. Huntington T (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95CrossRefGoogle Scholar
  49. ICSU (International Council for Science) (2004) ICSU report of the CSPR assessment panel on scientific data and information. ICSU, ParisGoogle Scholar
  50. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  51. IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change, Cambridge University Press, Cambridge/New York, pp 1–19Google Scholar
  52. Jin YF, Randerson JT, Goulden ML (2011) Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sens Environ 115(9):2302–2319. doi: 10.1016/j.rse.2011.04.031, Published: SEP 15 2011CrossRefGoogle Scholar
  53. Karl TR, Melillo JM, Peterson TC (eds) (2009) Global change impacts in the United States. Cambridge University Press, Cambridge, 188 ppGoogle Scholar
  54. Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44, W02402. doi: 10.1029/2007WR006004 CrossRefGoogle Scholar
  55. Korzun VI (1978) World water balance and water resources of the earth, studies and reports in hydrology, vol 25. UNESCO, ParisGoogle Scholar
  56. Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210Google Scholar
  57. L’vovitch MI (1973) The global water balance. Trans Am Geophys Union 54:28–42CrossRefGoogle Scholar
  58. Landerer FW, Swenson SC (2011) Accuracy of scaled GRACE terrestrial water storage estimates. Wat Resour Res 48(4). doi: 10.1029/2011WR011453
  59. Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw J, Wade J (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38:L23803. doi: 10.1029/2011GL049783, 2011 CrossRefGoogle Scholar
  60. Lazo JK, Morss RE, Demuth JL (2009) 300 Billion served: sources, perceptions, uses, and values of weather forecasts. Bull Am Meteorol Soc 90:785–798CrossRefGoogle Scholar
  61. Lehner B, Reidy Liermann C, Revenga C, Fekete B, Vörösmarty CJ, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High resolution mapping of global reservoirs and dams and their downstream river impacts. Front Ecol Environ. doi: 10.1890/100125 Google Scholar
  62. Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2:452–454. doi: 10.1038/ngeo567 CrossRefGoogle Scholar
  63. Loucks D (2007) Water resources and environmental management: issues, challenges, opportunities and options. Water Sci Technol Water Supply 7(2):1–10CrossRefGoogle Scholar
  64. Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophys Res Lett 34, L19709. doi: 10.1029/2007GL030948 CrossRefGoogle Scholar
  65. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Lett 36:L23701. doi: 10.1029/2009GL040736 CrossRefGoogle Scholar
  66. Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399. doi: 10.1126/science.1180251 CrossRefGoogle Scholar
  67. Meybeck M (2003) Global analysis of river systems: from earth system controls to Anthropocene syndromes. Philos Trans R Soc Lond Ser B. doi: 10.1098/rstb.2003, pp. 1379Google Scholar
  68. Meybeck M, Vörösmarty CJ (2005) Fluvial filtering of land to ocean fluxes: from natural Holocene variations to Anthropocene. Compte Rend 337:107–123CrossRefGoogle Scholar
  69. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574CrossRefGoogle Scholar
  70. Milly PCD, Cazenave A, Famiglietti J, Gornitz V, Laval K, Lettenmaier DP, Sahagian D, Wahr J, Wilson CR (2010) In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Terrestrial water-storage contributions to sea-level rise and variability. Wiley/Blackwell, Hoboken, 421 ppGoogle Scholar
  71. Mishra AK, Coulibaly P (2009) Developments in hydrometric network design: a review. Rev Geophys 47, RG2001. doi: 10.1029/2007RG000243 CrossRefGoogle Scholar
  72. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585CrossRefGoogle Scholar
  73. NRC (National Research Council) (1998) Global environmental change: research pathways for the next decade. National Academy Press, Washington, DCGoogle Scholar
  74. NRC (National Research Council) (1999a) Hydrologic science priorities for the U.S. Global change research program. National Academy Press, Washington, DCGoogle Scholar
  75. NRC (National Research Council) (1999b) New strategies for America’s watersheds. National Academy Press, Washington, DCGoogle Scholar
  76. NRC (National Research Council) (2000) From research to operations in weather satellites and numerical weather prediction: crossing the valley of death. National Academy Press, Washington, DCGoogle Scholar
  77. NRC (National Research Council) (2002a) Review of USGCRP plan for a New science initiative on the global water cycle. National Academy Press, Washington, DCGoogle Scholar
  78. NRC (National Research Council) (2002b) Report of a workshop on predictability & limits-to-prediction in hydrologic systems. National Academy Press, Washington, DCGoogle Scholar
  79. NRC (National Research Council) (2005) The science of instream flows: a review of the Texas instream flow program. National Academy Press, Washington, DCGoogle Scholar
  80. NRC (National Research Council) (2007) Earth science and applications from space: national imperatives for the next decade and beyond. National Academy Press, Washington, DCGoogle Scholar
  81. NRC (National Research Council) (2008a) Earth observations from space: the first 50 years of scientific achievements. National Academy Press, Washington, DCGoogle Scholar
  82. NRC (National Research Council) (2008b) Integrating multiscale observations of U.S. waters. National Academy Press, Washington, DCGoogle Scholar
  83. NRC (National Research Council) (2008c) Water implications of biofuels production in the United States. National Academy Press, Washington, DCGoogle Scholar
  84. NRC (National Research Council) (2009) Observing weather and climate from the ground up: a nationwide network of networks. National Academy Press, Washington, DCGoogle Scholar
  85. NRC (National Research Council) (2010a) Review of the WATERS network science plan. National Academy Press, Washington, DCGoogle Scholar
  86. NRC (National Research Council) (2010b) Expanding biofuel production: sustainability and the transition to advanced biofuels: summary of a workshop. National Academy Press, Washington, DCGoogle Scholar
  87. NRC (National Research Council) (2011a) Global change and extreme hydrology: testing conventional wisdom. Committee on hydrologic sciences. National Academy Press, Washington, DCGoogle Scholar
  88. NRC (National Research Council) (2011b) America’s climate choices. National Research Council, committee on America’s climate choices. National Academies Press, Washington, DC, 144 ppGoogle Scholar
  89. Okazawa Y, Yeh PJ-F, Kanae S, Oki T (2011) Development of a global flood risk index based on natural and socio-economic factors. Hydrol Sci J 56(5):789–804CrossRefGoogle Scholar
  90. Oki T (1999) The global water cycle. In: Browning K, Gurney R (eds) Global energy and water cycles. Cambridge University Press, Cambridge, pp 10–27Google Scholar
  91. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072CrossRefGoogle Scholar
  92. Oki T, Agata Y, Kanae S, Saruhashi T, Yang D, Musiake K (2001) Global assessment of current water resources using total runoff integrating pathways. Hydrol Sci J 46:983–996CrossRefGoogle Scholar
  93. Oki T, Entekhabi D, Harrold T (2004) The global water cycle. In: Sparks R, Hawkesworth C (eds) State of the planet: frontiers and challenges in geophysics, No. 150 in geophysical monograph series. AGU Publication, Washington, DC, p 414Google Scholar
  94. Oki T, Valeo C, Heal K (2006) Hydrology 2020: an integrating science to meet world water challenges. IAHS Publication, Wallingford, p 300Google Scholar
  95. Oki T, Blyth EM, Berbery EH, Alcaraz-Segura D (2012) Land cover and land use changes and their impacts on hydroclimate, ecosystems and society. Plenary paper for the WCRP open science conference, Denver, October 2012. DRAFT, 18 February 2012Google Scholar
  96. Palaniappan M, Gleick PH, Allen L, Cohen MJ, Christian-Smith J, Smith C (2010) Clearing the waters: a focus on water quality solutions. United Nations Environment Programme, Nairobi, 88pGoogle Scholar
  97. Parson M (2011) Expert report on data policy – open access. GRDI 2020, pp 8. see
  98. Pokhrel Y, Hanasaki N, Koirala S, Cho J, Yeh PJ-F, Kim H, Kanae S, Oki T (2011) Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol 13:255–269CrossRefGoogle Scholar
  99. Pokhrel Y, Hanasaki N, Yeh PJ-F, Yamada TJ, Kanae S, Oki T (2012) Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat Geosci. doi: 10.1038/ngeo1476
  100. Ralph FM, Neiman PJ, Kiladis GN, Weickmann K, Reynolds DW (2011) A multiscale observational case study of a Pacific atmospheric river exhibiting tropical-extratropical connections and a mesoscale frontal wave. Mon Weather Rev 139(4):1169–1189CrossRefGoogle Scholar
  101. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826CrossRefGoogle Scholar
  102. Rodell M, Famiglietti JS, Chen J, Seneviratne S, Viterbo P, Holl SL, Wilson CR (2004a) Basin-scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20):L20504. doi: 10.1029/2004GL020873 CrossRefGoogle Scholar
  103. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004b) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. doi: 10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  104. Rodell M, Famiglietti JS, Scanlon BR (2010) Realizing the potential for satellite gravimetry in hydrology: second GRACE hydrology workshop, August 4, 2009, Austin, TX. EOS Trans AGU 91(10):96Google Scholar
  105. Sahoo AK, Pan M, Troy TJ, Vinukollu RK, Sheffield J, Wood EF (2011) Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens Environ 115(8):1850–1865CrossRefGoogle Scholar
  106. Shapiro M, Shukla J, Brunet G, Nobre C, Béland M, Dole R, Trenberth K, Anthes R, Asrar G, Barrie L, Bougeault P, Brasseur G, Burridge D, Busalacchi A, Caughey J, Chen D, Church J, Enomoto T, Hoskins B, Hov O, Laing A, Le Treut H, Marotzke J, McBean G, Meehl G, Miller M, Mills B, Mitchell J, Moncrieff M, Nakazawa T, Olafsson H, Palmer T, Parsons D, Rogers D, Simmons A, Troccoli A, Toth Z, Uccellini L, Velden C, Wallace M (2010) An earth-system prediction initiative for the 21st century. Bull Am Meteorol Soc 91:1377–1388CrossRefGoogle Scholar
  107. Shen Y, Oki T, Utsumi N, Kanae S, Hanasaki N (2008) Projection of future world water resources under SRES scenarios: water withdrawal. Hydrol Sci J 53(1):11–33CrossRefGoogle Scholar
  108. Shiklomanov IA (ed) (1997) Assessment of water resources and water availability in the world. Background report for the comprehensive assessment of the freshwater resources of the world, WMO/SEIGoogle Scholar
  109. Shiklomanov AI, Lammers RB, Vörösmarty CJ (2002) Widespread decline in hydrological monitoring threatens Pan-Arctic research. AGU-Eos Trans 83(13):16–17Google Scholar
  110. Stakhiv EZ (2011) Pragmatic approaches for water management under climate change uncertainty. J Am Water Resour Assoc (JAWRA). doi: 10.1111/j.1752-1688.2011.00589 Google Scholar
  111. Stokstad E (1999) Scarcity of rain, stream gages threatens forecasts. Science 285(5431):1199–1200CrossRefGoogle Scholar
  112. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi: 10.1029/2006WR005779 CrossRefGoogle Scholar
  113. Syed TH, Famiglietti JS, Chambers D (2009) GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol 10(1):22–40. doi: 10.1175/2008JHM993.1 CrossRefGoogle Scholar
  114. Syed TH, Famiglietti JS, Chambers D, Willis J, Hilburn K (2010) Satellite-based global ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc Natl Acad Sci USA 107(42):17916–17921. doi: 10.1073/pnas.1003292107, published ahead of print October 4, 2010CrossRefGoogle Scholar
  115. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380CrossRefGoogle Scholar
  116. Syvitski JPM, Kettner AJ, Hannon MT, Hutton EWH, Overeem I, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686CrossRefGoogle Scholar
  117. Trenberth KE (2011a) Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip Rev Clim Change 2(6): 925–930Google Scholar
  118. Trenberth KE (2011b) Changes in precipitation with climate change. Clim Res 47:123–138. doi: 10.3354/cr00953. [PDF] CrossRefGoogle Scholar
  119. Trenberth KE, Belward A, Brown O, Haberman E, Karl TR, Running S, Ryan B, Tanner M, Wielicki B (2011) Challenges of a sustained climate observing system. In: Plenary paper for the WCRP Open Science Conference, Denver, October 2011. DRAFT, 25 July 2011Google Scholar
  120. Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758CrossRefGoogle Scholar
  121. Van Vliet M, Ludwig F, Kabat P, Yearsley JR, Lettenmaier DP (2012) Vulnerability of U.S. and European electricity supply to climate change. Nat Clim Change 2:676–681. doi:10.1038/nclimate1546Google Scholar
  122. Vörösmarty CJ, Leveque C, Revenga C (Convening Lead Authors) (2005) Chapter 7: Fresh water. In: Bos R, Caudill C, Chilton J, Douglas EM, Meybeck M, Prager D, Balvanera P, Barker S, Maas M, Nilsson C, Oki T, Reidy CA (eds) Millennium ecosystem assessment, vol 1 conditions and trends working group report. Island Press, pp 165–207. 966 ppGoogle Scholar
  123. Vörösmarty CJ, Meybeck M (2004) Responses of continental aquatic systems at the global scale: new paradigms, new methods. In: Kabat P, Claussen M, Dirmeyer PA, Gash JHC, Bravo L, Meybeck M, Pielke RA Sr, Vörösmarty CJ, Hutjes RWA, Lutkemeier S (eds) Vegetation, water, humans and the climate. Springer, Heidelberg, pp 375–413, 566 ppCrossRefGoogle Scholar
  124. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288CrossRefGoogle Scholar
  125. Vörösmarty CJ, Day J, DeSherbinen A, Syvitski J (2009) Battling to save the world’s river deltas. Bull At Sci 65:31–43CrossRefGoogle Scholar
  126. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561CrossRefGoogle Scholar
  127. Weimerskirch H, Louzao M, de Grissac S, Delord K (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science 335(6065):211–214. doi: 10.1126/science.1210270 CrossRefGoogle Scholar
  128. Wentz FJL, Ricciardulli KH, Mears C (2007) How much more rain will global warming bring? Science 317:233–235CrossRefGoogle Scholar
  129. Wisser D, Frolking S, Douglas EM, Fekete BM, Vörösmarty CJ, Schumann AH (2008) Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys Res Lett 35:L24408. doi: 10.1029/2008GL035296 CrossRefGoogle Scholar
  130. WMO (World Meteorological Organization) (1995) WMO policy and practice for the exchange of meteorological and related data and products including guidelines on relationships in commercial meteorological activities. World Meteorological Organization Congress, Resolution 40 (Cg-XII, 1995), GenevaGoogle Scholar
  131. Wollheim WM, Vörösmarty CJ, Bouwman AF, Green P, Harrison JA, Meybeck M, Peterson BJ, Seitzinger SP, Syvitski JP (2008) A spatially distributed framework for aquatic modeling of the Earth system (FrAMES). Global Biogeochem Cycles 22:GB2026. doi: 10.1029/2007GB002963 CrossRefGoogle Scholar
  132. Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47, W05301. doi: 10.1029/2010WR010090 CrossRefGoogle Scholar
  133. World Climate Research Program (WCRP) (2010) GEWEX Plans for 2013 and Beyond. World Climate Research Programme.
  134. Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527–539CrossRefGoogle Scholar
  135. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465. doi: 10.1038/nature06025 CrossRefGoogle Scholar
  136. Zhou YP, Xu KM, Sud YC, Betts AK (2011) Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J Geophys Res 116:D09101. doi: 10.1029/2010JD015197 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Peter H. Gleick
    • 1
    Email author
  • Heather Cooley
    • 1
  • James S. Famiglietti
    • 2
  • Dennis P. Lettenmaier
    • 3
  • Taikan Oki
    • 4
  • Charles J. Vörösmarty
    • 5
  • Eric F. Wood
    • 6
  1. 1.Pacific InstituteOaklandUSA
  2. 2.Department of Earth System ScienceUniversity of California Center for Hydrologic Modeling (UCCHM), University of California, IrvineIrvineUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA
  4. 4.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  5. 5.Department of Civil EngineeringCity University of New YorkNew YorkUSA
  6. 6.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations