Advertisement

Aerosol Cloud-Mediated Radiative Forcing: Highly Uncertain and Opposite Effects from Shallow and Deep Clouds

  • Daniel Rosenfeld
  • Robert Wood
  • Leo J. Donner
  • Steven C. Sherwood

Abstract

Aerosol cloud-mediated radiative forcing, commonly known as the aerosol indirect effect (AIE), dominates the uncertainty in our ability to quantify anthropogenic climate forcing and respectively the climate sensitivity. This uncertainty can be appreciated based on the state of our understanding as presented in this chapter.

Adding aerosols to low clouds generally causes negative radiative forcing by three main mechanisms: redistributing the same cloud water in larger number of smaller drops, adding more cloud water, and increasing the cloud cover. Aerosols affect these components sometimes in harmony but more often in opposite ways. These processes can be highly non-linear, especially in precipitating clouds in which added aerosol can inhibit rain. There is probably little overall sensitivity in most clouds but hyper sensitivity in some, where the processes become highly nonlinear with positive feedbacks, causing changes of cloud regimes in marine stratocumulus under anticyclones. This leads to a complicated and uneven AIE. Process models at high resolution (LES) have reached the stage that they can capture much of this complicated behavior of shallow clouds. The implementation of the processes of cloud aerosol interactions into GCMs is rudimentary due to severe computational limitations and the current state of cloud and aerosol parameterizations, but intense research efforts aimed at improving the realism of cloud-aerosol interaction in GCMs are underway.

Aerosols added to deep clouds generally produce an additional component of positive radiative forcing due to cloud top cooling, expanding, and detraining vapor to the upper troposphere and lower stratosphere. The level of scientific understanding of the AIE on deep clouds is even lower than for the shallow clouds, as mixed phase and ice processes play an important role. Respectively, the parameterization of these processes for GCMs is further away than for the low clouds.

Crucially, the AIE of both shallow and deep clouds must be considered for quantifying anthropogenic climate forcing and inferring climate sensitivity from observations.

While our objective is reducing the uncertainty, it appears that the recently acquired additional knowledge actually increased the uncertainty range of the AIE, as we learn of additional effects that should be quantified.

Keywords

Cloud-aerosol interactions Aerosol indirect radiative forcing 

References

  1. Abdul-Razzak H, Ghan S (2000) A parameterization of aerosol activation. 2. Multiple aerosol types. J Geophys Res 105:6837–6844Google Scholar
  2. Ackerley D, Booth BBB, Knight SHE, Highwood EJ, Frame DJ, Allen MR, Rowell DP (2011) Sensitivity of twentieth-century rainfall to sulfate aerosol and CO2 forcing. J Climate 24:4999–5014Google Scholar
  3. Ackerman AS, Toon OB, Hobbs PV (1993) Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science 262:226–229Google Scholar
  4. Ackerman AS, Toon OB, Hobbs PV (1995) Numerical modeling of ship tracks produced by injections of cloud condensation nuclei into marine stratiform clouds. J Geophys Res 100:7121–7133Google Scholar
  5. Ackerman AS, Kirkpatrick MP, Stevens DE, Toon OB (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432:1014–1017Google Scholar
  6. Agee EM, Chen TS, Dowell KE (1973) A review of mesoscale cellular convection. Bull Amer Meteorol Soc 54:1004–1012Google Scholar
  7. Albrecht BA (1989) Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–1230Google Scholar
  8. Allen RJ, Sherwood SC (2011) The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Clim Dyn 36:1959–1978Google Scholar
  9. Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354. doi: 10.1038/nature11097 Google Scholar
  10. Anderson TL, Charlson RJ, Schwartz SE, Knutti R, Boucher O, Rodhe H, Heintzenberg J (2003) Climate forcing by aerosols–a hazy picture. Science 300:1103–1104Google Scholar
  11. Andreae MO (2009) Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos Chem Phys 9:543–556Google Scholar
  12. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342Google Scholar
  13. Andreae MO, Stevens B, Feingold G, Fuzzi S, Kulmala M, Lau WK, Lohmann U, Rosenfeld D, Siebesma P (2009) Aerosols, clouds, precipitation and climate (ACPC) – science plan & implementation strategy. http://www.ileaps.org/index.php?option=com_phocadownload&view=category&id=8:p
  14. Arking A, Childs JD (1985) Retrieval of cloud cover parameters from multispectral satellite images. J Clim Appl Meteor 24:322–333Google Scholar
  15. Baker MB, Charlson RJ (1990) Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature 345:142–145Google Scholar
  16. Bell TL, Rosenfeld D, Kim KM, Yoo JM, Lee MI, Hahnenberger M (2008) Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J Geophys Res 113:D02209. doi: 10.1029/2007JD008623 Google Scholar
  17. Bell TL, Rosenfeld D, Kim KM (2009) Weekly cycle of lightning: evidence of storm invigoration by pollution. Geophys Res Lett 36:L23805. doi: 10.1029/2009GL040915 Google Scholar
  18. Bennartz R (2007) Global assessment of marine boundary layer cloud droplet number concentration from satellite. J Geophys Res 112:D02201. doi: 10.1029/2006JD007547 Google Scholar
  19. Berner AH, Bretherton CS, Wood R (2011) Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06. Atmos Chem Phys 11:10525–10540. doi: 10.5194/acp-11-10525-2011 Google Scholar
  20. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505Google Scholar
  21. Booth BBB, Dunstone NJ, Halloran PR, Andrews Bellouin TN (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. doi: 10.1038/nature10946 Google Scholar
  22. Brenguier JL, Pawlowska H, Schuller L, Preusker R, Fischer J, Fouquart Y (2000) Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J Atmos Sci 57:803–821Google Scholar
  23. Bretherton CS, Blossey P, Uchida J (2007) Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys Res Lett 34(3):L03813Google Scholar
  24. Bretherton CS, George R, Wood R, Allen G, Leon D, Albrecht B (2010a) Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20S during VOCALS-REx. Atmos Chem Phys 10:15 921–15 962Google Scholar
  25. Bretherton CS, Uchida J, Blossey PN (2010b) Slow manifolds and multiple equilibria in Stratocumulus-Capped boundary layers. J Adv Model Earth Syst 2(12)Google Scholar
  26. Brohan P, Kennedy J, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006 548 Google Scholar
  27. Burkhardt U, Kärcher B (2011) Global radiative forcing from contrail cirrus. Nat Clim Change 1:54–58Google Scholar
  28. Chang CY, Chiang JCH, Wehner MF, Friedman AR, Ruedy R (2011) Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J Climate 24:2540–2555Google Scholar
  29. Chen B, Yin Y (2011) Modeling the impact of aerosols on tropical overshooting thunderstorms and stratospheric water vapor. J Geophys Res 116(D19):D19203Google Scholar
  30. Chen TC, Xue L, Lebo ZJ, Wang H, Rasmussen RM, Seinfeld JH (2011) A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmos Chem Phys 11:9749–9769. doi: 10.5194/acp-11-9749-2011 Google Scholar
  31. Christensen MW, Stephens GL (2011) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening. J Geophys Res 116:D03201Google Scholar
  32. Clarke AD, Uehara T, Porter JN (1997) Atmospheric nuclei and related aerosol fields over the Atlantic: clean subsiding air and continental pollution during ASTEX. J Geophys Res 102(D21):25,281–25,292Google Scholar
  33. Coakley JA, Walsh CD (2002) Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J Atmos Sci 59:668–680Google Scholar
  34. Cotton WR, Zhang H, McFarquhar GM, Saleeby SM (2007) Should we consider polluting hurricanes to reduce their intensity? J Weath Modif 39:70–73Google Scholar
  35. Donner L (1993) A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J Atmos Sci 50:889–906Google Scholar
  36. Donner L, Seman C, Hemler R (2001) A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: thermodynamic and hydrological aspects in a general circulation model. J Climate 14:3444–3463Google Scholar
  37. Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. J Climate 24:3484–3519. doi: 10.1175/2011JCLI3955.1 Google Scholar
  38. Fan J, Zhang R, Li G, Tao W-K (2007) Effects of aerosols and relative humidity on cumulus clouds. J Geophys Res 112:D14204. doi: 10.1029/2006JD008136 Google Scholar
  39. Fan J, Yuan T, Comstock JM, Ghan S, Khain A, Leung LR, Li Z, Martins VJ, Ovchinnikov M (2009) Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res 114:D22206. doi: 10.1029/2009JD012352 Google Scholar
  40. Fan J, Comstock JM, Ovchinnikov M, McFarlane SA, McFarquhar G, Allen G (2010) Tropical anvil characteristics and water vapor of the tropical tropopause layer: impact of heterogeneous and homogeneous freezing parameterizations. J Geophys Res 115:D12201. doi: 10.1029/2009JD012696 Google Scholar
  41. Fan J, Rosenfeld D, Ding Y, Leung LR, Li Z (2012) Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys Res Lett 39(9):L09806Google Scholar
  42. Feingold G, Siebert H (2009) Cloud-aerosol interactions from the micro to the cloud scale. In: Heintzenberg J, Charlson R (eds) Perturbed clouds in the climate system: their relationship to energy balance, atmospheric dynamics, and precipitation. MIT Press, Cambridge, MAGoogle Scholar
  43. Feingold G, Stevens B, Cotton WR, Frisch AS (1996) On the relationship between drop in-cloud residence time and drizzle production in stratocumulus clouds. J Atmos Sci 53:1108–1122Google Scholar
  44. Feingold G, Koren I, Wang H, Xue H, Brewer WA (2010) Precipitation-generated oscillations in open cellular cloud fields. Nature 466:849–852. doi: 10.1038/nature09314 Google Scholar
  45. Forest CE, Stone PH, Sokolov AP (2006) Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys Res Lett 33:L01705. doi: 10.1029/2005GL023977 Google Scholar
  46. Forster PMdF, Shine KP (1999) Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling. Geophys Res Lett 26:3309–3312Google Scholar
  47. Forster PMdF, Shine KP (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys Res Lett 29(6):1086. doi: 10.1029/2001GL013909 Google Scholar
  48. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Radiative forcing of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 129–234Google Scholar
  49. Freud E, Rosenfeld D (2012) Linear relation between convective cloud drop number concentration and depth for rain initiation. J Geophys Res 117:D02207. doi: 10.1029/2011JD016457 Google Scholar
  50. Freud E, Rosenfeld D, Kulkarni JR (2011) Resolving both entrainment-mixing and number of activated CCN in deep convective clouds. Atmos Chem Phys 11:12887–12900. doi: 10.5194/acp-11-12887-2011 Google Scholar
  51. Fridlind AM, Ackerman AS, Jensen EJ, Heymsfield AJ, Poellot MR, Stevens DE, Wang D, Miloshevich LM, Baumgardner D, Lawson RP, Wilson JC, Flagan RC, Seinfeld JH, Jonsson HH, VanReken TM, Varutbangkul V, Rissman TA (2004) Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science 304:718–722Google Scholar
  52. Fridlind AM, Ackerman AS, McFarquhar G, Zhang G, Poellot MR, DeMott PJ, Prenni AJ, Heymsfield AJ (2007) Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J Geophys Res 112:D24202. doi: 10.1029/2007JD008646 Google Scholar
  53. Fridlind AM, van Diedenhoven B, Ackerman AS, Avramov A, Mrowiec A, Morrison H, Zuidema P, Shupe MD (2012) A FIRE-ACE/SHEBA case study of mixed-phase arctic boundary layer clouds: entrainment rate limitations on rapid primary ice nucleation processes. J Atmos Sci 69:365–389Google Scholar
  54. George RC, Wood R (2010) Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean. Atmos Chem Phys 10:4047–4063. doi: 10.5194/acp-10-4047-2010 Google Scholar
  55. Gerber H (1996) Microphysics of marine stratocumulus clouds with two drizzle modes. J Atmos Sci 53(12):1649–1662Google Scholar
  56. Golaz JC, Salzmann M, Donner L, Horowitz L, Ming Y, Zhao M (2011) Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J Climate 24:3145–3160. doi: 10.1175/2010JCLI3945.1 Google Scholar
  57. Goren T, Rosenfeld D (2012) Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas. J Geophys Res. doi: 10.1029/2012JD017981
  58. Guo H, Golaz JC, Donner LJ, Larson V, Schanen D, Griffin B (2010) Multivariate probability density functions for cloud droplet activation in large-scale models: single column tests. Geosci Model Dev 3:475–486. doi: 10.5194/gmd-3-475-2010 Google Scholar
  59. Guo H, Golaz JC, Donner LJ (2011) Aerosol effects on stratocumulus water paths in a PDF-based parameterization. Geophys Res Lett 38(17):L17807. doi: 10.1029/2011GL048 611 Google Scholar
  60. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110(D18):D18104. doi: 10.1029/2005JD005776 Google Scholar
  61. Hegg DA, Covert DS, Jonsson HH, Woods RK (2011) A simple relationship between cloud drop number concentration and precursor aerosol concentration for the regions of earth’s large marine stratocumulus decks. Atmos Chem Phys Discuss 11:28663–28687. doi: 10.5194/acpd-11-28663-2011 Google Scholar
  62. Hendricks J, Karcher B, Lohmann U (2011) Effects of ice nuclei on cirrus clouds in a global climate model. J Geophys Res 116:D18206Google Scholar
  63. Hill AA, Dobbie S, Yin Y (2008) The impact of aerosols on non-precipitating marine stratocumulus. Q J R Meteorol Soc 134:1143–1154. doi: 10.1002/qj.278 Google Scholar
  64. Hill AA, Feingold G, Jiang H (2009) The influence of entrainment and mixing assumption on aerosol-cloud interactions in marine stratocumulus. J Atmos Sci 66:1450–1464Google Scholar
  65. Hogan RJ, Behera MD, O’Connor EJ, Illingworth AJ (2004) Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys Res Lett 31:L05106. doi: 10.1029/2003GL018977 Google Scholar
  66. Hu Y, Rodier S, Xu K, Sun W, Huang J, Lin B, Zhai P, Josset D (2010) Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J Geophys Res 115:D00H34. doi: 10.1029/2009JD012384 Google Scholar
  67. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007. The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  68. Isaksen ISA, Granier C, Myhre G, Berntsen TK, Dalsøren SB, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Coxk T, Eyring V, Fowlerm D, Fuzzi S, Jöckel P, Laj P, Lohmann U, Maione M, Monks P, Prevot ASH, Raes F, Richter A, Rognerud B, Schulz M, Shindell D, Stevenson DS, Storelvmo T, Wang WC, van Weele M, Wild M, Wuebbles D (2009) Atmospheric composition change: climate-chemistry interactions. Atmos Environ 43:5138–5192Google Scholar
  69. Jensen EJ, Ackerman AS (2006) Homogeneous aerosol freezing in the tops of high-altitude tropical cumulonimbus clouds. Geophys Res Lett 33:L08802. doi: 10.1029/2005GL024 928 Google Scholar
  70. Jiang H, Feingold G, Cotton WR (2002) A modeling study of entrainment of cloud condensation nuclei into the marine boundary layer during ASTEX. J Geophys Res 107(D24):4813. doi: 10.1029/2001JD001502 Google Scholar
  71. Jiang H, Feingold G, Koren I (2009a) Effect of aerosol on trade cumulus cloud morphology. J Geophys Res 114:D11209. doi: 10.1029/2009JD011750 Google Scholar
  72. Jiang JH, Su H, Massie ST, Colarco PR, Schoeberl MR, Platnick S (2009b) Aerosol-CO relationship and aerosol effect on ice cloud particle size: analyses from Aura Microwave Limb Sounder and Aqua Moderate Resolution Imaging Spectroradiometer observations. J Geophys ResAtmos 114:D20207Google Scholar
  73. Jiang JH, Su H, Zhai C, Massie ST, Schoberl M, Colarco PR, Platnick S, Gu Y, Liou KN (2011) Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos Chem Phys 11:457–463Google Scholar
  74. Kaufman YJ, Koren I, Remer L, Rosenfeld D, Rudich I (2005) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad Sci 102:11207–11212Google Scholar
  75. Khain A, Lynn B (2011) Simulation of tropical cyclones using a mesoscale model with spectral bin microphysics. In: Lupo AR (ed) Recent hurricane research – climate, dynamics, and societal impacts. Intech Open Access Publisher, Rijeka, pp 197–227Google Scholar
  76. Khain AP, Pokrovsky A (2004) Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model, Part II: Sensitivity study. J Atmos Sci 61:2983–3001Google Scholar
  77. Khain AP, Pokrovsky A, Pinsky M, Seifert A, Phillips V (2004) Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model Part 1: Model description. J Atmos Sci 61:2963–2982Google Scholar
  78. Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteorol Soc 131:1Google Scholar
  79. Khain AP, BenMoshe N, Pokrovsky A (2008a) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci 65:1721Google Scholar
  80. Khain A, Cohen N, Lynn B, Pokrovsky A (2008b) Possible aerosol effects on lightning activity and structure of hurricanes. J Atmos Sci 65:3652–3667Google Scholar
  81. Khain A, Lynn B, Dudhia J (2010) Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J Atmos Sci 67:365–384Google Scholar
  82. Kiehl JT (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:L22710. doi: 10.1029/2007GL031383 Google Scholar
  83. Knutson TR, Delworth TL, Dixon KW, Held IM, Lu J, Ramaswamy V, Schwarzkopf MD, Stenchikov G, Stouffer RJ (2006) Assessment of twentieth-century regional surface trends using the GFDL CM2 coupled models. J Climate 19:1624–1651Google Scholar
  84. Konwar M, Maheskumar RS, Kulkarni JR, Freud E, Goswami BN, Rosenfeld D (2012) Aerosol control on depth of warm rain in convective clouds. J Geophys Res 117(D13):D13204Google Scholar
  85. Koren I, Feingold G (2011) Aerosol–cloud–precipitation system as a predator-prey problem. PNAS 108:12,227–12,232. doi: 10.1073/pnas.1101777108
  86. Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828. doi: 10.1029/2005GL023187 Google Scholar
  87. Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the Amazon. Science 321:946. doi: 10.1126/science.1159185 Google Scholar
  88. Koren I, Feingold G, Remer LA (2010a) The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos Chem Phys 10:8855–8872. doi: 10.5194/acp-10-8855-2010 Google Scholar
  89. Koren I, Remer LA, Altaratz O, Martins JV, Davidi A (2010b) Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos Chem Phys 10:5001–5010Google Scholar
  90. Kostinski AB (2008) Drizzle rates versus cloud depths for marine stratocumuli. Environ Res Lett 3(4):045019Google Scholar
  91. Kubar TL, Hartmann DL, Wood R (2009) Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J Atmos Sci 66:2953–2972Google Scholar
  92. Langenberg H (2011) Triggered lightning. In “news and views”. Nat Geosci 4:140Google Scholar
  93. Lebsock MD, Stephens GL, Kummerow C (2008) Multisensor satellite observations of aerosol effects on warm clouds. J Geophys Res 113(D15):D15205. doi: 10.1029/2008jd009876 Google Scholar
  94. Lebsock MD, L’Ecuyer TS, Stephens GL (2011) Detecting the ratio of rain and cloud water in low-latitude shallow marine clouds. J Appl Meteorol Clim 50:419–432Google Scholar
  95. Lee SS, Donner LJ, Phillips VTJ (2009) Sensitivity of aerosol and cloud effects on radiation to cloud types: comparison between deep convective clouds and wam stratiform clouds over one-day period. Atmos Chem Phys 9:2555–2575Google Scholar
  96. Lee SS, Donner LJ, Penner JE (2010) Thunderstorm and stratocumulus: how does their contrasting morphology affect their interactions with aerosols? Atmos Chem Phys 10:6819–6837. doi: 10.5194/acp-10-6819-2010 Google Scholar
  97. Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4(12):888–894. doi: 10.1038/ngeo1313 Google Scholar
  98. Lin H, Leaitch W (1997) Development of an in-cloud aerosol activation for climate modeling. In: Proceedings of the WMO Workshop on Measurement of cloud properties for forecasts of weather, air quality, and climate, Geneva, pp 328–335Google Scholar
  99. Lin JC, Matsui T, Pielke RA Sr, Kummerow C (2006) Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study. J Geophys Res 111:D19204Google Scholar
  100. Lindsey DT, Fromm M (2008) Evidence of the cloud lifetime effect from wildfire-induced thunderstorms. Geophys Res Lett 35:L22809. doi: 10.1029/2008GL035680 Google Scholar
  101. Liu X, Penner JE, Wang M (2009) Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. J Geophys ResAtmos 114:D03204Google Scholar
  102. Liu X, Easter RC, Ghan SJ, Zaveri R, Rasch P, Shi X, Lamarque J-F, Gettelman A, Morrison H, Vitt F, Conley A, Park S, Neale R, Hannay C, Ekman AML, Hess P, Mahowald N, Collins W, Iacono MJ, Bretherton CS, Flanner MG, Mitchell D (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci Model Dev 5:709–739. doi: 10.5194/gmd-5-709-2012 Google Scholar
  103. Lohmann U (2008) Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos Chem Phys 8(7):2115–2131Google Scholar
  104. Lu M, Seinfeld JH (2006) Effect of aerosol number concentration on cloud droplet dispersion: a large-eddy simulation study and implications for aerosol indirect forcing. J Geophys Res 111:D02207. doi: 10.1029/2005JD006419 Google Scholar
  105. Martin GM, Johnson DW, Spice A (1994) The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci 51:1823–1842Google Scholar
  106. Matheson MA, Coakley JA, Tahnk WR (2006) Multiyear Advanced Very High Resolution Radiometer observations of summertime stratocumulus collocated with aerosols in the northeastern Atlantic. J Geophys Res 111:D15206. doi: 10.1029/2005JD006890 Google Scholar
  107. Mauritsen T, Sedlar J, Tjernström M, Leck C, Martin M, Shupe M, Sjogren S, Sierau B, Persson POG, Brooks IM, Swietlicki E (2011) An Arctic CCN-limited cloud-aerosol regime. Atmos Chem Phys 11:165–173. doi: 10.5194/acp-11-165-2011 Google Scholar
  108. McComiskey A, Graham Feingold G (2008) Quantifying error in the radiative forcing of the first aerosol indirect effect. Geophys Res Lett 35:L02810. doi: 10.1029/2007GL032667 Google Scholar
  109. McFarquhar GM, Ghan S, Verlinde J, Korole A, Strapp JW, Schmid B, Tomlinson JM, Wolde M, Brooks SD, Cziczo D, Dubey MK, Fan J, Flynn C, Gultepe I, Hubbe J, Gilles MK, Laskin A, Lawson P, Leaitch WR, Liu P, Liu X, Lubin D, Mazzoleni C, Macdonald AM, Moffet RC, Morrison H, Ovchinnikov M, Shupe MD, Turne DD, Xie S, Zelenyuk A, Bae K, Freer M, Glen A (2011) Indirect and semi-direct aerosol campaign. Bull Amer Meteorol Soc 92:183–201Google Scholar
  110. Menon S, Del Genio AD, Kaufman YJ, Bennartz R, Koch D, Loeb N, Orlikowski D (2008) Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J Geophys Res 113:D14S22. doi: 10.1029/2007JD009442 Google Scholar
  111. Ming Y, Ramaswamy V (2011) A model investigation of aerosol-induced changes in tropical circulation. J Climate 24:5125–5133. doi: 10.1175/2011JCLI4108.1 Google Scholar
  112. Ming Y, Ramaswamy V, Donner LJ, Phillips VTJ, Klein SA, Ginoux PA, Horowitz LW (2007) Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J Atmos Sci 64:1189–1209Google Scholar
  113. Ming Y, Ramaswamy V, Chen G (2011) A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J Climate 24:6077–6091. doi: 10.1175/2011JCLI4111.1 Google Scholar
  114. Molinie J, Pontikis C (1995) A climatological study of tropical thunderstorm clouds and lightning frequencies on the French Guyana coast. Geophys Res Lett 22:1085–1088Google Scholar
  115. Morrison H, Grabowski WW (2011) Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos Chem Phys 11(20):10503–10523Google Scholar
  116. Morrison H, Zuidema P, Ackerman AS, Avramov A, de Boer G, Fan J, Fridlind AM, Hashino T, Harrington JY, Luo Y, Ovchinnikov M, Shipway B (2011) Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J Adv Model Earth Syst 3:M06003. doi: 10.1029/2011MS000066, 23 ppGoogle Scholar
  117. Morrison H, de Boer G, Feingold G, Harrington J, Shupe MD, Sulia K (2012) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 5:11–17. doi: 10.1038/NGE01332 Google Scholar
  118. Morrison AE, Siems ST, Manton MJ (2011) A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific. J Climate 24(9):2405–2418Google Scholar
  119. Murphy DM, Solomon S, Portmann RW, Rosenlof KH, Forster PM, Wong T (2009) An observationally based energy balance for the Earth since 1950. J Geophys Res 114:D17107Google Scholar
  120. Myhre G (2009) Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 325:187–190Google Scholar
  121. Myhre G, Nilsen JS, Gulstad L, Shine KP, Rognerud B, Isaksen ISA (2007a) Radiative forcing due to stratospheric water vapour from CH(4) oxidation. Geophys Res Lett 34(1):L01807Google Scholar
  122. Myhre G, Stordal F, Johnsrud M, Kaufman YJ, Rosenfeld D, Storelvmo T, Kristjansson JE, Berntsen TK, Myhre A, Isaksen ISA (2007b) Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos Chem Phys 7:3081–3101Google Scholar
  123. Nielsen JK, Foster M, Heidinger A (2011) Tropical stratospheric cloud climatology from the PATMOS-x dataset: an assessment of convec- tive contributions to stratospheric water. Geophys Res Lett 38:L18801Google Scholar
  124. Notholt J, Luo BP, Fueglistaler S, Weisenstein D, Rex M, Lawrence MG, Bingemer H, Wohltmann I, Corti T, Warneke T, von Kuhlmann R, Peter T (2005) Influence of tropospheric SO2 emissions on particle formation and the stratospheric humidity. Geophys Res Lett 32:L07810. doi: 10.1029/2004GL022159 Google Scholar
  125. Notholt J, Toon GC, Fueglistaler S, Wennberg PO, Irion FW, Mc-Carthy M, Scharringhausen M, Rhee TS, Kleinboehl A, Velazco V (2010) Trend in ice moistening the stratosphere – constraints from isotope data of water and methane. Atmos Chem Phys 10(1):201–207Google Scholar
  126. Penner JE, Chen Y, Wang M, Liu X (2009) Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos Chem Phys 9:879–896Google Scholar
  127. Penner JE, Xu L, Wang M (2011) Satellite methods underestimate indirect climate forcing by aerosols. Proc Nat Acad Sci 108:13404–13408. doi: 10.1073/pnas.1018526108 Google Scholar
  128. Petters MD, Snider JR, Stevens B, Vali G, Faloona I, Russell L (2006) Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical pacific marine boundary layer. J Geophys Res 111:D02206Google Scholar
  129. Phillips VTJ, Choularton TW, Blyth AM, Latham J (2002) The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud. Q J R Meteorol Soc 128:951–971Google Scholar
  130. Platnick S, Twomey S (1994) Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. J Appl Meteorol 33:334–347Google Scholar
  131. Pöschl U, Martin ST, Sinha B, Chen Q, Gunthe SS, Huffman JA, Borrmann S, Farmer DK, Garland RM, Helas G, Jimenez JL, King SM, Manzi A, Mikhailov E, Pauliquevis T, Petters MD, Prenni AJ, Roldin P, Rose D, Schneider J, Su H, Zorn SR, Artaxo P, Andreae MO (2010) Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329:1513–1516Google Scholar
  132. Prenni AJ, Harrington JY, Tjernstrom M, DeMott PJ, Avramov A, Long CN, Kreidenweis SM, Olsson PQ, Verlinde J (2007) Can ice‐nucleating aerosols affect arctic seasonal climate? Bull Amer Meteorol Soc 88(4):541–550. doi: 10.1175/BAMS-88-4-541 Google Scholar
  133. Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjánsson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Grandey B, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkeåg A, Iversen T, Seland Ø, Easter R, Ghan SJ, Rasch PJ, Morrison H, Lamarque J-F, Iacono MJ, Kinne S, Schulz M (2009) Aerosol indirect effects general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717Google Scholar
  134. Randall DA (1980) Conditional Entrainment into a stratocumulus layer with distributed radiative cooling. J Atmos Sci 37:148–159Google Scholar
  135. Rangno AL, Hobbs PV (1991) Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Q J R Meteorol Soc 117:207–241Google Scholar
  136. Rennó NO, Williams E, Rosenfeld D, Fischer DG, Fischer J, Kremic T, Agrawal A, Andreae MO, Bierbaum R, Blakeslee R, Boerner A, Bowles N, Christian H, Cox A, Dunion J, Horvath A, Huang X, Khain A, Kinne S, Lemos MC, Penner JE, Pöschl U, Quaas J, Seran E, Stevens B, Walati T, Wagner T (2013) CHASER: an innovative satellite mission concept to measure the effects of aerosols on clouds and climate. Bull Amer Meteorol Soc 94:e-View. doi: 10.1175/BAMS-D-11-00239
  137. Rosenfeld D (2000) Suppression of rain and snow by Urban and industrial air pollution. Science 287(5459):1793–1796Google Scholar
  138. Rosenfeld D, Bell TL (2011) Why do tornados and hailstorms rest on weekends? J Geophys Res 116:D20211. doi: 10.1029/2011JD016214 Google Scholar
  139. Rosenfeld D, Lahav R, Khain AP, Pinsky M (2002) The role of sea-spray in cleansing air pollution over ocean via cloud processes. Science 297:1667–1670Google Scholar
  140. Rosenfeld D, Kaufman Y, Koren I (2006a) Switching cloud cover and dynamical regimes from open to closed Benard cells in response to aerosols suppressing precipitation. Atmos Chem Phys 6:2503–2511Google Scholar
  141. Rosenfeld D, Woodley WL, Krauss TW, Makitov V (2006b) The structure of severe convective storms in Mendoza, Argentina. J Appl Meteor 45:1261–1281, September 2006Google Scholar
  142. Rosenfeld D, Fromm M, Trentmann J, Luderer G, Andreae MO, Servranckx R (2007a) The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos Chem Phys 7:645–659Google Scholar
  143. Rosenfeld D, Khain A, Lynn B, Woodley WL (2007b) Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos Chem Phys 7:3411–3424Google Scholar
  144. Rosenfeld D, Woodley WL, Axisa D, Freud E, Hudson JG, Givati A (2008a) Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J Geophys Res 113:D15203. doi: 10.1029/2007JD009544 Google Scholar
  145. Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008b) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313Google Scholar
  146. Rosenfeld D, Clavner M, Nirel R (2011a) Pollution and dust aerosols modulating tropical cyclones intensities. Atmos Res 102:66–76Google Scholar
  147. Rosenfeld D, Yu X, Liu G, Xu X, Zhu Y, Yue Z, Dai J, Dong Z, Dong Y, Peng Y (2011b) Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires. Geophys Res Lett 38:L21804. doi: 10.1029/2011GL049423 Google Scholar
  148. Rosenfeld D, Woodley WL, Khain A, Cotton WR, Carrió G, Ginis I, Golden JH (2012a) Aerosol effects on microstructure and intensity of tropical cyclones. Bull Amer Meteorol Soc 93(7):987–1001Google Scholar
  149. Rosenfeld D, Williams E, Andreae MO, Freud E, Pöschl U, Rennó NO (2012b) The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds. Atmos Meas Tech 5:2039–2055. doi: 10.5194/amt-5-2039-2012 Google Scholar
  150. Salzmann M, Ming Y, Golaz JC, Ginoux PA, Morrison H, Gettelman A, Krämer M, Donner LJ (2010) Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests. Atmos Chem Phys 10:8037–8064Google Scholar
  151. Sandu I, Brenguier J, Geoffroy O, Thouron O, Masson V (2008) Aerosol impacts on the diurnal cycle of marine stratocumulus. J Atmos Sci 65:2705–2718Google Scholar
  152. Seifert A, Beheng KD (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteorol Atmos Phys 92:67–82Google Scholar
  153. Sekiguchi M, Nakajima T, Suzuki K, Kawamoto K, Higurashi A, Rosenfeld D, Sano I, Mukai S (2003) A study of the direct and indirect effects of aerosols using global satellite datasets of aerosol and cloud parameters. J Geophys Res 108(D22):4699. doi: 10.1029/2002JD003359 Google Scholar
  154. Sharon TM, Albrecht BA, Jonsson H, Minnis P, Khaiyer MM, VanReken TM, Seinfeld J, Flagan R (2006) Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J Atmos Sci 63:983–997Google Scholar
  155. Sherwood SC (2002a) Aerosols and ice particle size in tropical cumulonimbus. J Climate 15:1051–1063Google Scholar
  156. Sherwood SC (2002b) A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science 295:1272–1275Google Scholar
  157. Sherwood SC (2005) Detection of faceted crystals in deep convective clouds via the antisolar peak. J Geophys Res 110:D14205Google Scholar
  158. Sherwood SC, Phillips VTP, Wettlaufer JS (2006) Small ice crystals and the climatology of lightning. Geophys Res Lett 33:L05804. doi: 10.1029/2005GL025242 Google Scholar
  159. Sherwood S, Alexander MJ, Brown AR, McFarlane NA, Gerber EP, Feingold G, Scaife A, Grabowski W (2013) Climate processes: clouds, aerosols and dynamics (B6). In: Asrar GR, Hurrell JW (eds) Climate science for serving society. Springer, Dordrecht, pp 73–103Google Scholar
  160. Shupe MD, Matrosov SY, Uttal T (2006) Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J Atmos Sci 63:697–711Google Scholar
  161. Small JD, Chuang PY, Feingold G, Jiang H (2009) Can aerosol decrease cloud lifetime? Geophys Res Lett 36:L16806. doi: 10.1029/2009GL038888 Google Scholar
  162. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223. doi: 10.1126/science.1182488 Google Scholar
  163. Song X, Zhang G (2011) Microphysics parameterization for convective clouds in a global climate model: description and single-column model tests. J Geophys Res 116:D02201. doi: 10.1029/2010JD014 833 Google Scholar
  164. Sorooshian A, Feingold G, Lebsock M, Jiang H, Stephens G (2009) On the precipitation susceptibility of clouds to aerosol perturbations. Geophys Res Lett 36(L13):803Google Scholar
  165. Sorooshian A, Feingold G, Lebsock MD, Jiang H, Stephens G (2010) Deconstructing the precipitation susceptibility construct: improving methodology for aerosol-cloud-precipitation studies. J Geophys Res 115:D17201. doi: 10.1029/2009JD013426 Google Scholar
  166. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607. doi: 10.1038/nature08281 Google Scholar
  167. Stevens B, Vali G, Comstock K, van Zanten MC, Austin PH, Bretherton CS, Lenschow DH (2005) Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull Amer Meteorol Soc 86:51–57Google Scholar
  168. Storer RL, van den Heever SC (2013) Microphyiscal processes evident in aerosol forcing of tropical deep convective clouds. J Atmos Sci 70:430–446Google Scholar
  169. Su H, Jiang JH, Lu X, Penner JE, Read WG, Massie S, Schoeberl MR, Colarco P, Livesey NJ, Santee ML (2011) Observed increase of TTL temperature and water vapor in polluted clouds over Asia. J Climate 24(11):2728–2736Google Scholar
  170. Tao W-K, Li X, Khain A, Matsui T, Lang S, Simpson J (2007) Role of atmospheric aerosol concentration on deep convective precipitation: cloud-resolving model simulations. J Geophys Res 112:D24S18Google Scholar
  171. Ten Hoeve JE, Jacobson MZ, Remer LA (2012) Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. J Geophys Res 117:D08203Google Scholar
  172. Terai CR, Wood R, Leon DC, Zuidema P (2012) Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos Chem Phys 12:4567–4583. doi: 10.5194/acp-12-4567-2012 Google Scholar
  173. Twomey S (1977) The influence of pollution on the short wave albedo of clouds. J Atmos Sci 34:1149–1152Google Scholar
  174. Twomey S (1991) Aerosols, clouds and radiation. Atmos Environ 254:2435–2442Google Scholar
  175. van den Heever SC, Carrio GG, Cotton WR, Demott PJ, Prenni AJ (2006) Impact of nucleating aerosol on Florida storms, part 1: mesoscale simulations. J Atmos Sci 63:1752Google Scholar
  176. Van Zanten MC, Stevens B (2005) Observations of the structure of heavily precipitating marine stratocumulus. J Atmos Sci 62:4327–4342Google Scholar
  177. Van Zanten MC, Stevens B, Vali G, Lenschow DH (2005) Observations in nocturnal marine stratocumulus. J Atmos Sci 62:88–106Google Scholar
  178. Wang C (2005) A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. dynamics and microphysics. J Geophys Res 110:D21211Google Scholar
  179. Wang H, Feingold G (2009) Modeling mesoscale cellular structures and drizzle in marine stratocumulus, part I: impact of drizzle on the formation and evolution of open cells. J Atmos Sci 66:3237–3256Google Scholar
  180. Wang SP, Wang Q, Feingold G (2003) Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J Atmos Sci 60:262–278Google Scholar
  181. Wang H, Feingold G, Wood R, Kazil J (2010) Modeling microphysical and meteorological controls on precipitation and cloud cellular structures in Southeast Pacific stratocumulus. Atmos Chem Phys 10:6347–6362. doi: 10.5194/acp-10-6347-2010 Google Scholar
  182. Wang H, Rasch PJ, Feingold G (2011a) Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei. Atmos Chem Phys 11:4237–4249. doi: 10.5194/acp-11-4237-2011 Google Scholar
  183. Wang PK, Su SH, Charvat Z, St’astka J, Lin HM (2011b) Cross tropopause transport of water by Mid-latitude deep convective storms: a review. Terr Atmos Ocean Sci 22(5):447–462Google Scholar
  184. Wang JS, Seidel DJ, Free M (2012) How well do we know recent climate trends at the tropical tropopause? J Geophys Res 117:D09118Google Scholar
  185. Wilcox EM, Roberts G, Ramanathan V (2006) Influence of aerosols on the shortwave cloud radiative forcing from North Pacific oceanic clouds: results from the Cloud Indirect Forcing Experiment (CIFEX). Geophys Res Lett 33:L21804. doi: 10.1029/2006GL027150 Google Scholar
  186. Williams ER, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano W, Machado L, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(D20):8082. doi: 10.1029/2001JD000380 Google Scholar
  187. Wood R (2006) The rate of loss of cloud droplets by coalescence in warm clouds. J Geophys Res 111(D21):205Google Scholar
  188. Wood R (2007) Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J Atmos Sci 64:2657–2669Google Scholar
  189. Wood R (2012) Stratocumulus clouds. Mon Wea Rev 140(8):2373–2423Google Scholar
  190. Wood R, Hartmann DL (2006) Spatial variability of liquid water path in marine boundary layer clouds: the importance of mesoscale cellular convection. J Climate 19:1748–1764Google Scholar
  191. Wood R, Comstock KK, Bretherton CS, Cornish C, Tomlinson J, Collins DR, Fairall C (2008) Open cellular structure in marine stratocumulus sheets. J Geophys Res 113(D12):207Google Scholar
  192. Wood R, Kubar T, Hartmann DL (2009) Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds: Part II. Heuristic models of rain formation. J Atmos Sci 66:2973–2990Google Scholar
  193. Wood R, Bretherton C, Leon D, Clarke A, Zuidema P, Allen G, Coe H (2011) An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos Chem Phys 11:2341–2370Google Scholar
  194. Wu L, Su H, Jiang JH (2011) Regional simulations of deep convection and biomass burning over South America: 2. Biomass burning aerosol effects on clouds and precipitation. J Geophys Res Atmos 116.D17. doi: 10.1029/2011JD016106
  195. Yuan T, Remer LA, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38:L04701. doi: 10.1029/2010GL046052 Google Scholar
  196. Zhang H, McFarquhar GM, Saleeby SM, Cotton WR (2007a) Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys Res Lett 34:L14812. doi: 10.2029/2007GL029876 Google Scholar
  197. Zhang R, Li G, Fan J, Wu DL, Molina MJ (2007b) Intensification of Pacific storm track linked to Asian pollution. Proc Natl Acad Sci U S A 104:5295Google Scholar
  198. Zhang H, McFarquhar GM, Cotton WR, Deng Y (2009) Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys Res Lett 36:L06802. doi: 10.1029/2009GL037276 Google Scholar
  199. Zhang D, Wang Z, Liu D (2010) A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J Geophys Res 115:D00H13. doi: 10.1029/2009JD012143 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniel Rosenfeld
    • 1
  • Robert Wood
    • 2
  • Leo J. Donner
    • 3
  • Steven C. Sherwood
    • 4
  1. 1.Institute of Earth SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Atmospheric SciencesUniversity of WashingtonSeattleUSA
  3. 3.Geophysical Fluid Dynamics Laboratory/NOAA, Princeton UniversityPrincetonUSA
  4. 4.Climate Change Research Centre (CCRC) and Australian Research Council (ARC), Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia

Personalised recommendations