Climate Processes: Clouds, Aerosols and Dynamics

  • Steven C. Sherwood
  • M. Joan Alexander
  • Andy R. Brown
  • Norm A. McFarlane
  • Edwin P. Gerber
  • Graham Feingold
  • Adam A. Scaife
  • Wojciech W. Grabowski


Physical processes not well resolved by climate models continue to limit confidence in detailed predictions of climate change. The representation of cloud and convection-related processes dominates the model spread in global climate sensitivity, and affects the simulation of important aspects of the present-day climate especially in the tropics. Uncertainty in aerosol radiative effects complicates the interpretation of climate changes in the observational and paleoclimate records, in particular limiting our ability to infer climate sensitivity. Dynamical uncertainties, notably those involving teleconnections and troposphere-stratosphere interaction, also affect simulation of regional climate change especially at high latitudes. In response, targeted field programs, new satellite capabilities, and new computational approaches are promoting progress on these problems. Advances include recognition of the likely importance of non-greenhouse gas forcings in driving recent trends in the general circulation, compensating interactions and emergent phenomena in aerosol-cloud-dynamical systems, and the climatic importance of cumulus entrainment. Continued progress will require, among other things, more integrative analysis of key processes across scales, recognizing the complexity at the local level but also the constraints and possible buffering operating at larger (system) scales.


Clouds Atmospheric convection Aerosols Cloud-aerosol interaction Atmospheric dynamics Climate feedbacks Climate modeling 



AAS was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). EPG is supported by the US National Science Foundation under grant AGS- 0938325. GF acknowledges NOAA’s Climate Goal.


  1. Ackerman AS, Kirkpatrick MP, Stevens DE, Toon OB (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432(7020):1014–1017CrossRefGoogle Scholar
  2. Alexander MJ, Eckermann SD, Broutman D, Ma J (2009) Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys Res Lett 36:L12816. doi: 10.1029/2009GL038587 CrossRefGoogle Scholar
  3. Alexander MJ, Coauthors (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q J R Meteorol Soc 136:1103–1124Google Scholar
  4. Allen RJ, Sherwood SC (2010) The aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys Res Lett 37:L07702CrossRefGoogle Scholar
  5. Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354CrossRefGoogle Scholar
  6. Annamalai H, Hamilton K, Sperber KR (2007) South Asian Monsoon and its relationship with ENSO in the IPCC-AR4 simulations. J Clim 20:1071–1092CrossRefGoogle Scholar
  7. Arakelian A, Codron F (2012) Southern hemisphere jet variability in the IPSL GCM at varying resolutions. J Atmos Sci 69(12):3788–3799CrossRefGoogle Scholar
  8. Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern annular mode trends. J Clim 19:2896–2905CrossRefGoogle Scholar
  9. Barnes EA, Hartmann DL (2010) Dynamical feedbacks and the persistence of the NAO. J Atmos Sci 67:851–865CrossRefGoogle Scholar
  10. Bellouin N et al (2008) Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J Geophys Res Atmos 113:D10205CrossRefGoogle Scholar
  11. Bender FA et al (2012) Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift. Clim Dyn 38:2037–2053Google Scholar
  12. Berner J, Shutts GJ, Leutbecher M, Palmer TN (2009) A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J Atmos Sci 66:603–626CrossRefGoogle Scholar
  13. Birner T (2010) Recent widening of the tropical belt from global tropopause statistics: sensitivities. J Geophys Res 115:D23109. doi: 10.1029/2010JD014664 CrossRefGoogle Scholar
  14. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. doi: 10.1038/nature10946 CrossRefGoogle Scholar
  15. Bretherton CS, Uchida J, Blossey PN (2010) Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J Adv Model Earth Syst 2, Art.#14. doi: 10.3894/JAMES.2010.2.14
  16. Brown A, Milton S, Cullen M, Golding B, Mitchell J, Shelly A (2012) Unified modeling and prediction of weather and climate: a 25 year journey. Bull Am Meteorol Soc 93:1865–1877. doi: 10.1175/BAMS-D-12-00018.1 CrossRefGoogle Scholar
  17. Butchart N, Scaife AA, Bourqui M, de Grandpre J, Hare SHE, Kettleborough J, Langematz U, Manzini E, Sassi F, Shibata K, Shindell D, Sigmond M (2006) Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn 27:727–741CrossRefGoogle Scholar
  18. Butchart N, Cionni I, Eyring V, Waugh DW, Akiyoshi H, Austin J, Brühl C, Chipperfield MP, Cordero E, Dameris M, Deckert R, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Kinnison DE, Li F, Mancini E, McLandress C, Pawson S, Pitari G, Plummer DA, Rozanov E, Sassi F, Scinocca JF, Shepherd TG, Shibata K, Tian W (2010) Chemistry–climate model simulations of 21st century stratospheric climate and circulation changes. J Clim 23:5349–5374CrossRefGoogle Scholar
  19. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238CrossRefGoogle Scholar
  20. Charlson RJ, Ackerman AS, Bender FA-M, Anderson TL, Liu Z (2007) On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus B 59:715–727. doi: 10.1111/j.1600-0889.2007.00297.x CrossRefGoogle Scholar
  21. Chen WT, Nenes A, Liao H, Adams P, Seinfeld JH (2010) Global climate response to anthropogenic aerosol indirect effects: present day and year 2100. J Geophys Res 115:D12207. doi: 10.1029/2008JD011619 CrossRefGoogle Scholar
  22. Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne, JL, Seze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35, Art. L15 704. doi: 10.1029/2008GL034207
  23. Christensen MW, Stephens GL (2011) Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening. J Geophys Res Atmos 116:D03201. doi: 10.1029/2010JD014638 CrossRefGoogle Scholar
  24. Chung CE, Ramanathan V et al (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res Atmos 110(D24):D24207CrossRefGoogle Scholar
  25. Colman R, McAvaney BJ (2011) On tropospheric adjustment to forcing and climate feedbacks. Clim Dyn 36:1649–1658CrossRefGoogle Scholar
  26. Conen F et al (2011) Biological residues define the ice nucleation properties of soil dust. Atmos Chem Phys Discuss 11:16585CrossRefGoogle Scholar
  27. D’Andrea F et al (1998) Northern hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1998. Clim Dyn 14:385–407. doi: 10.1007/s003820050230 CrossRefGoogle Scholar
  28. Demott P et al (2010) Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci 107(25):11217–11222. doi: 10.1073/pnas.0910818107 Google Scholar
  29. Derbyshire SH, Beau I, Bechtold P, Grandpeix J-Y, Piriou J-M, Redelsperger J-L, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130:3055–3079CrossRefGoogle Scholar
  30. Deser D, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779CrossRefGoogle Scholar
  31. Doblas-Reyes FJ, Deque M, Valero F, Stephenson DB (1998) North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus Ser A 50:573–595CrossRefGoogle Scholar
  32. Donner LJ (1993) A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J Atmos Sci 50:889–906CrossRefGoogle Scholar
  33. Eckermann SD (2011) Explicitly stochastic parameterization of nonorographic gravity wave drag. J Atmos Sci 68:1749–1765CrossRefGoogle Scholar
  34. Ervens B, Cubison MJ, Andrews E, Feingold G, Ogren JA, Jimenez JL, Quinn PK, Bates TS, Wang J, Zhang Q, Coe H, Flynn M, Allan JD (2010) CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmos Chem Phys 10:4795–4807. doi: 10.5194/acp-10-4795-2010 CrossRefGoogle Scholar
  35. Evan S, Alexander MJ, Dudhia J (2012) Model study of intermediate-scale tropical inertia-gravity waves and comparison to TWP-ICE campaign observations. J Atmos Sci 69:591–610. doi: 10.1175/JAS-D-11-051.1 CrossRefGoogle Scholar
  36. Fast JD, Gustafson WI Jr, Chapman EG, Easter RC Jr, Rishel JP, Zaveri RA, Grell G, Barth M (2011) The Aerosol Modeling Testbed: a community tool to objectively evaluate aerosol process modules. Bull Am Meteorol Soc 92(3):343–360. doi: 10.1175/2010BAMS2868.1 CrossRefGoogle Scholar
  37. Feingold G, Koren I, Wang H, Xue H, Brewer WA (2010) Precipitation-generated oscillations in open cellular cloud fields. Nature 466:849. doi: 10.1038/nature09314 CrossRefGoogle Scholar
  38. Frenkel Y, Khouider B, Majda A (2011a) Simple multicloud models for diurnal cycle of precipitation. Part I.: Formulation and the tropical ocean. J Atmos Sci 68(10 (October 2011)):2169–2190CrossRefGoogle Scholar
  39. Frenkel Y, Khouider B, Majda A (2011b) Simple multicloud models for diurnal cycle of precipitation. Part II: The continental regime. J Atmos Sci 61(17 (September 2004)):2188–2205Google Scholar
  40. Gastineau G, Soden BJ (2009) Model projected changes of extreme wind events in response to global warming. Geophys Res Lett 36:L10810CrossRefGoogle Scholar
  41. Gastineau G, Soden BJ (2011) Evidence for a weakening of tropical surface wind extremes in response to atmospheric warming. Geophys Res Lett 38:L09706CrossRefGoogle Scholar
  42. Gerber EP, Coauthors (2012) Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull Am Meteorol Soc 93(6):845–859Google Scholar
  43. Gerber EP, Voronin S, Polvani LM (2008) Testing the annular mode autocorrelation timescale in simple atmospheric general circulation models. Mon Wea Rev 136:1523–1536CrossRefGoogle Scholar
  44. Ghan SJ, Abdul-Razzak H, Nenes A, Ming Y, Liu X, Ovchinnikov M (2011) Droplet nucleation: physically-based parameterizations and comparative evaluation. J Adv Model Earth Syst 3:M10001CrossRefGoogle Scholar
  45. Giorgetta MA, Manzini E, Roeckner E (2002) Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys Res Lett 29(8):1245. doi: 10.1029/2002GL014756 CrossRefGoogle Scholar
  46. Golaz J-C, Salzmann M, Donner LJ, Horowitz LW, Ming Y, Zhao M (2011) Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J Clim 24:3145–3160CrossRefGoogle Scholar
  47. Grabowski WW (2006) Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J Climate 19:4664–4682CrossRefGoogle Scholar
  48. Gunn R, Phillips BB (1957) An experimental investigation of the effect of air pollution on the initiation of rain. J Meteorol 14:272–280CrossRefGoogle Scholar
  49. Gustafson WI Jr, Berg LK, Easter RC, Ghan SJ (2008) The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modelling framework models. Environ Res Lett 3:Art. 025005. doi: 10.1088/1748-9326/3/2/025005
  50. Hannah WM, Maloney ED (2011) The role of moisture-convection feedbacks in simulating the Madden-Julian oscillation. J Clim 245:2754–2770CrossRefGoogle Scholar
  51. Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36:L07801CrossRefGoogle Scholar
  52. Harte J (2002) Towards a synthesis of the Newtonian and Darwinian worldviews. Phys Today 55:29–34CrossRefGoogle Scholar
  53. Hartmann DL, Larson K (2002) An important constraint on tropical cloud – climate feedback. Geophys Res Lett 29(20):1951–1954CrossRefGoogle Scholar
  54. Heald CL, Kroll JH, Jimenez JL, Docherty KS, DeCarlo PF, Aiken AC, Chen Q, Martin ST, Farmer DK, Artaxo P (2010) A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys Res Lett 37:L08803. doi: 10.1029/2010GL042737 Google Scholar
  55. Heintzenberg J, Charlson RJ (eds) (2009) Clouds in the perturbed climate system: their relationship to energy balance, atmospheric dynamics, and precipitation. Struengmann Forum Report. MIT Press, Cambridge, pp 197–215Google Scholar
  56. Held IM (2005) The Gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1615. doi: 10.1175/BAMS-86-11-1609 CrossRefGoogle Scholar
  57. Hodzic A et al (2009) Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols. Atmos Chem Phys 9:6949–6982CrossRefGoogle Scholar
  58. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Nino. Nat Geosci 2:32–36CrossRefGoogle Scholar
  59. Jakob C (2010) Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities and strategies. Bull Am Meteorol Soc 91:869–875CrossRefGoogle Scholar
  60. Jeffery CA (2007) Inhomogeneous cloud evaporation, invariance, and Damkohler number. J Geophys Res 112:D24S21. doi: 10.1029/2007JD008789 CrossRefGoogle Scholar
  61. Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22(10):2713–2725CrossRefGoogle Scholar
  62. Kaas E, Branstator G (1993) The relationship between a zonal index and blocking activity. J Atmos Sci 50:3061–3077. doi: 10.1175/1520-0469(1993)050<3061:TRBAZI>2.0.CO;2 CrossRefGoogle Scholar
  63. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444CrossRefGoogle Scholar
  64. Khouider B, Majda AJ (2008) Equatorial convectively coupled waves in a simple multicloud model. J Atmos Sci 65:3376–3397CrossRefGoogle Scholar
  65. Khouider B, Majda AJ, Stechmann SN (2013) Climate science in the tropics: waves, vortices, and PDEs, Nonlinearity 26:R1–R68Google Scholar
  66. Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi: 10.1029/2010GL042873 Google Scholar
  67. Kiladis GN, Wheeler MC et al (2009) Convectively coupled equatorial waves. Rev Geophys 47:RG2003CrossRefGoogle Scholar
  68. Koren I, Feingold G (2011) Aerosol-cloud-precipitation system as a predator-prey problem. Proc Natl Acad Sci U S A 108(30):12227–12232CrossRefGoogle Scholar
  69. Koren I, Remer LA, Kaufman YJ, Rudich Y, Martins JV (2007) On the twilight zone between clouds and aerosols. Geophys Res Lett 34:L08805. doi: 10.1029/2007GL029253 CrossRefGoogle Scholar
  70. Kroll JH, Smith JD et al (2009) Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys Chem Chem Phys 11(36):8005–8014CrossRefGoogle Scholar
  71. Kug J-S, Jin F-F (2009) Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys Res Lett 36:L05709. doi: 10.1029/2008GL036435 CrossRefGoogle Scholar
  72. Lapina K, Heald CL, Spracklen DV, Arnold SR, Allan JD, Coe H, McFiggans G, Zorn SR, Drewnick F, Bates TS, Hawkins LN, Russell LM, Smirnov A, O’Dowd CD, Hind AJ (2011) Investigating organic aerosol loading in the marine environment. Atmos Chem Phys 11:8847–8860. doi: 10.5194/acp-11-8847-2011 CrossRefGoogle Scholar
  73. Lau N-C (1988) Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmos Sci 45:2718–2743CrossRefGoogle Scholar
  74. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26(7–8):855–864CrossRefGoogle Scholar
  75. Lee S-S (2012) Effect of aerosol on circulations and precipitation in deep convective clouds. J Atmos Sci 69:1957–1974. CrossRefGoogle Scholar
  76. Lee S, Feingold G (2010) Precipitating cloud-system response to aerosol perturbations. Geophys Res Lett 37:L23806. doi: 10.1029/2010GL045596 Google Scholar
  77. Lenton A, Codron F, Bopp L, Metzl N, Cadule P, Tagliabue A, Le Sommer J (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36:L12606. doi: 10.1029/2009GL038227 CrossRefGoogle Scholar
  78. Li F, Austin J, Wilson J (2008) The strength of the Brewer–Dobson circulation in a changing climate: coupled chemistry – climate model simulations. J Clim 21:40–57CrossRefGoogle Scholar
  79. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525. CrossRefGoogle Scholar
  80. Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy J-F, Jourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J Clim 19:2665–2690CrossRefGoogle Scholar
  81. Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer scheme for the unified model. Part I: Scheme description and single-column model tests. Mon Wea Rev 128:3187–3199CrossRefGoogle Scholar
  82. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi: 10.1029/2006GL028443 CrossRefGoogle Scholar
  83. Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric Circulation to El Nino versus global warming. J Clim 21:5835–5851CrossRefGoogle Scholar
  84. Maloney ED, Sobel AH, Hannah WM (2010) Intraseasonal variability in an aquaplanet general circulation model. J Adv Model Earth Syst 2, Art. #5. doi: 10.3894/JAMES.2010.2.5
  85. Mapes BE, Neale RB (2011) Parameterizing convective organization to escape the entrainment dilemma. J Adv Model Earth Syst 3:M06004. doi: 10.1029/2011MS000042 CrossRefGoogle Scholar
  86. Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J Geophys Res 114:D12114. doi: 10.1029/2009JD011919 CrossRefGoogle Scholar
  87. McComiskey A, Feingold G (2012) The scale problem in quantifying aerosol indirect effects. Atmos Chem Phys 12:1031–1049. doi: 10.5194/acp-12-1031-2012 CrossRefGoogle Scholar
  88. McLandress C, Scinocca JF (2005) The GCM response to current parameterizations of nonorographic gravity wave drag. J Atmos Sci 62:2394–2413CrossRefGoogle Scholar
  89. McLandress C, Shepherd TG (2009) Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J Clim 22:1516–1540CrossRefGoogle Scholar
  90. Mitchell DL, Finnegan W (2009) Modification of cirrus clouds to reduce global warming. Environ Res Lett 4(4):045102CrossRefGoogle Scholar
  91. Morrison H, Grabowski WW (2011) Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos Chem Phys 11:10503–10523CrossRefGoogle Scholar
  92. Morrison H, DeBoer G, Feingold G, Harrington JY, Shupe M, Sulia K (2011) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 5:11–17. doi: 10.1038/ngeo1332 CrossRefGoogle Scholar
  93. Myhre G (2009) Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science 325(5937):187–190CrossRefGoogle Scholar
  94. Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Wea Rev 115(1):3–12CrossRefGoogle Scholar
  95. Neggers RAJ, Siebesma AP, Heus T (2012) Continuous single-column model evaluation at a permanent meteorological supersite. Bull Am Meteorol Soc 93(9):1389–1400CrossRefGoogle Scholar
  96. Perlwitz J, Pawson S, Fogt R, Nielsen JE, Neff W (2008) The impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714. doi: 10.1029/2008GL033317 CrossRefGoogle Scholar
  97. Polvani LM, Waugh DW, Correa GJP, Son S-W (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812CrossRefGoogle Scholar
  98. Quaas J, Ming Y, Menon S, Takemura T, Wang M, Penner JE, Gettelman A, Lohmann U, Bellouin N, Boucher O, Sayer AM, Thomas GE, McComiskey A, Feingold G, Hoose C, Kristjansson JE, Liu X, Balkanski Y, Donner LJ, Ginoux PA, Stier P, Grandey B, Feichter J, Sednev I, Bauer SE, Koch D, Grainger RG, Kirkevag A, Iversen T, Seland O, Easter R, Ghan S, Rasch P, Morrison H, Lamarque J, Iacono M, Kinne S, Schulz M (2009) Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmos Chem Phys 9:8697–8717CrossRefGoogle Scholar
  99. Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud-parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564CrossRefGoogle Scholar
  100. Raymond DJ, Fuchs Z (2009) Moisture modes and the Madden-Julian oscillation. J Clim 22:3031–3046CrossRefGoogle Scholar
  101. Richter JH, Sassi F, Garcia RR (2010) Toward a physically based gravity wave source parameterization in a general circulation model. J Atmos Sci 67:136–156CrossRefGoogle Scholar
  102. Ring MJ, Plumb RA (2008) The response of a simplified GCM to axisymmetric forcings: applicability of the fluctuation–dissipation theorem. J Atmos Sci 65:3880–3898CrossRefGoogle Scholar
  103. Rio C, Hourdin F, Grandpeix J-Y, Lafore J-P (2009) Shifting the diurnal cycle of parameterized deep convection over land. Geophys Res Lett 36:L07809. doi: 10.1029/2008GL036779 CrossRefGoogle Scholar
  104. Robinson FJ, Sherwood SC, Li Y (2008) Resonant response of deep convection to surface hot spots. J Atmos Sci 65:276–286CrossRefGoogle Scholar
  105. Robinson FJ, Sherwood SC, Gerstle D, Liu C, Kirshbaum DJ (2011) Exploring the land-ocean contrast in convective vigor using islands. J Atmos Sci 68:602–618CrossRefGoogle Scholar
  106. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15(15):2103–2116CrossRefGoogle Scholar
  107. Sato K, Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M (2009) On the origins of gravity waves in the mesosphere. Geophys Res Lett 36:L19801. doi: 10.1029/2009GL039908 CrossRefGoogle Scholar
  108. Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:3486–3514CrossRefGoogle Scholar
  109. Scaife AA, Knight JR (2008) Ensemble simulations of the cold European winter of 2005/2006. Q J R Meteorol Soc 134:1647–1659CrossRefGoogle Scholar
  110. Scaife AA, Butchart N, Warner CD, Stainforth D, Norton WA, Austin J (2000) Realistic Quasi-Biennial Oscillations in a simulation of the global climate. Geophys Res Lett 27:3481–3484CrossRefGoogle Scholar
  111. Scaife AA, Woollings T, Knight J, Martin G, Hinton T (2010) Atmospheric blocking and mean biases in climate models. Bull Am Meteorol Soc 23:6143–6152. doi: 10.1175/2010JCLI3728.1 Google Scholar
  112. Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38:L23703. doi: 10.1029/2011GL049573 CrossRefGoogle Scholar
  113. Scaife AA, Spangehl T, Fereday D, Cubasch U, Langematz U, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield M, Gettelman A, Hardiman S, Michou M, Rozanov E, Shepherd TG (2012) Climate change and stratosphere-troposphere interaction. Clim Dyn 38:2089–2097. doi: 10.1007/s00382-011-1080-7 CrossRefGoogle Scholar
  114. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi: 10.1029/2009RG000302 CrossRefGoogle Scholar
  115. Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi: 10.1029/2007JD008861 CrossRefGoogle Scholar
  116. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24Google Scholar
  117. Seifert A, Köhler C, Beheng KD (2012) Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos Chem Phys 12:709–725CrossRefGoogle Scholar
  118. Sharon TM, Albrecht BA, Jonsson HH, Minnis P, Khaiyer MM, Van Reken TM, Seinfeld J, Flagan R (2006) Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J Atmos Sci 63:983–997CrossRefGoogle Scholar
  119. Sherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O'Gorman PA (2010) Relative humidity changes in a warmer climate. J Geophys Res 115:D09104CrossRefGoogle Scholar
  120. Shutts GJ (1986) A case study of eddy forcing during an Atlantic blocking episode. Adv Geophys 29:135–162. doi: 10.1016/S0065-2687(08)60037-0 CrossRefGoogle Scholar
  121. Shutts GJ, Vosper SB (2011) Stratospheric gravity waves revealed in NWP model forecasts. Q J R Meteorol Soc 137:303–317CrossRefGoogle Scholar
  122. Siebesma AP, Soares PM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. JAS 64:1230–1248Google Scholar
  123. Sigmond M, Scinocca JF (2010) The influence of the basic state on the Northern Hemisphere circulation response to climate change. J Clim 23:1434–1446CrossRefGoogle Scholar
  124. Slingo JM, Slingo A (1991) The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Q J R Meteorol Soc 117:333–364CrossRefGoogle Scholar
  125. Sloan LC, Pollard D (1998) Polar stratospheric clouds: a high latitude warming mechanism in an ancient greenhouse world. Geophys Res Lett 25(18):3517–3520CrossRefGoogle Scholar
  126. Sobel AH, Bretherton CS (2000) Modeling tropical precipitation in a single column. J Clim 13:4378–4392CrossRefGoogle Scholar
  127. Soden BJ, Vecchi GA (2011) The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys Res Lett 38:L12704CrossRefGoogle Scholar
  128. Solomon SK et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223CrossRefGoogle Scholar
  129. Solomon S et al (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333(6044):866–870CrossRefGoogle Scholar
  130. Son S-W, Coauthors (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486–1489Google Scholar
  131. Song I-S, Chun H-Y, Garcia RR, Boville BA (2007) Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization: Part II: Impacts in a GCM (WACCCM). J Atmos Sci 64:2286–2308CrossRefGoogle Scholar
  132. Spracklen V, Jimenez JL, Carslaw KS, Worsnop DR, Evans MJ, Mann GW, Zhang Q, Canagaratna MR, Allan J, Coe H, McFiggans G, Rap A, Forster P (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys Discuss 11:5699–5755CrossRefGoogle Scholar
  133. Stephens GL, Ecuyer TL, Forbes FR, Gettelman A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2011) Dreary state of precipitation in global models. J Geophys Res 115:D24211CrossRefGoogle Scholar
  134. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461(7264):607–613CrossRefGoogle Scholar
  135. Stevens B, Vali G, Comstock K, Wood R, van Zanten MC, Austin PH, Bretherton CS, Lenschow DH (2005) Pockets of open cells and drizzle in marine stratocumulus. Bull Am Meteorol Soc 86(1):51–57CrossRefGoogle Scholar
  136. Storelvmo T, Lohmann U, Bennartz R (2009) What governs the spread in shortwave forcings in the transient IPCC AR4 models? Geophys Res Lett 36, L01806CrossRefGoogle Scholar
  137. Stowasser M, Annamalai H, Hafner J (2009) Response of Asian summer monsoon to global warming: mean and synoptic systems. J Clim 22:1014–1036CrossRefGoogle Scholar
  138. Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter RC Jr, Feichter H, Fillmore D, Ghan SJ, Ginoux P, Gong S, Grini A, Hendricks J, Horrowitz L, Huang P, Isaksen I, Iversen T, Kloster S, Koch D, Kirkevag A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6(7):1777–1813CrossRefGoogle Scholar
  139. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  140. Turner J, Coauthors (2009) Nonannular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08 502. doi: 10.1029/2009GL037524
  141. van den Heever SC, Stephens GL, Wood NB (2011) Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J Atmos Sci 68(4):699–718CrossRefGoogle Scholar
  142. Volkamer R, Jimenez JL, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina LT, Worsnop DR, Molina MJ (2006) Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys Res Lett 33:L17811. doi: 10.1029/2006GL026899 CrossRefGoogle Scholar
  143. Wang H, Feingold G (2009) Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J Atmos Sci 66(11):3237–3256CrossRefGoogle Scholar
  144. Wang M, Ghan S, Ovchinnikov M, Liu X, Easter R, Kassianov E, Qian Y, Marchand R, Morrison H (2003) Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmos Chem Phys 11:5431–5455. doi: 10.5194/acp-11-5431-2011 CrossRefGoogle Scholar
  145. Wang S, Wang Q, Feingold G (2003) Turbulence, condensation and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J Atmos Sci 60:262–278CrossRefGoogle Scholar
  146. Warner J (1968) A reduction in rainfall associated with smoke from sugar-cane fires: an inadvertent weather modification? J Appl Meteor 7:247–251CrossRefGoogle Scholar
  147. Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M, Sato K (2008) General aspects of a T213L256 middle atmosphere general circulation model. J Geophys Res 113:D12110. doi: 10.1029/2008JD010026 CrossRefGoogle Scholar
  148. Wen G, Marshak A, Cahalan RF, Remer LA, Kleidman RG (2007) 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J Geophys Res 112:D13204. doi: 10.1029/2006JD008267 CrossRefGoogle Scholar
  149. Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi: 10.1029/2008jd011470 CrossRefGoogle Scholar
  150. Wood R (2012) Stratocumulus clouds, Mon Wea Rev, 140:2373–2423Google Scholar
  151. Xue H, Feingold G, Stevens B (2008) Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J Atmos Sci 65:392–406CrossRefGoogle Scholar
  152. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi: 10.1029/2005GL023684 CrossRefGoogle Scholar
  153. Zelinka MD, Hartmann DL (2010) Why is longwave cloud feedback positive? J Geophys Res 115:D16117. doi: 10.1029/2010jd013817 CrossRefGoogle Scholar
  154. Zelinka MD, Hartmann DL (2011) The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J Geophys Res 116, D23103CrossRefGoogle Scholar
  155. Zeng XP et al (2009) An indirect effect of ice nuclei on atmospheric radiation. J Atmos Sci 66:41–61CrossRefGoogle Scholar
  156. Zhang M, Bretherton CS (2008) Mechanisms of low cloud climate feedback in idealized single-column simulations with the Community Atmospheric Model (CAM3). J Clim 21:4859–4878CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Steven C. Sherwood
    • 1
  • M. Joan Alexander
    • 2
  • Andy R. Brown
    • 3
  • Norm A. McFarlane
    • 4
  • Edwin P. Gerber
    • 5
  • Graham Feingold
    • 6
  • Adam A. Scaife
    • 3
  • Wojciech W. Grabowski
    • 7
  1. 1.Climate Change Research Centre (CCRC) and Australian Research Council (ARC), Centre of Excellence for Earth Systems ScienceUniversity of New South WalesSydneyAustralia
  2. 2.NorthWest Research AssociatesBoulderUSA
  3. 3.Met Office, Hadley CentreExeterUK
  4. 4.Canadian Centre for Climate Modelling and AnalysisUniversity of VictoriaVictoriaCanada
  5. 5.Center for Atmosphere Ocean Science, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  6. 6.Chemical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA
  7. 7.Mesoscale and Microscale Meteorology DivisionNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations