Challenges of a Sustained Climate Observing System

  • Kevin E. TrenberthEmail author
  • Richard A. Anthes
  • Alan Belward
  • Otis B. Brown
  • Ted Habermann
  • Thomas R. Karl
  • Steve Running
  • Barbara Ryan
  • Michael Tanner
  • Bruce Wielicki


Observations of planet Earth and especially all climate system components and forcings are increasingly needed for planning and informed decision making related to climate services in the broadest sense. Although significant progress has been made, much more remains to be done before a fully functional and dependable climate observing system exists. Observations are needed on spatial scales from local to global, and all time scales, especially to understand and document changes in extreme events. Climate change caused by human activities adds a new dimension and a vital imperative: to acquire climate observations of sufficient quality and coverage, and analyze them into products for multiple purposes to inform decisions for mitigation, adaptation, assessing vulnerability and impacts, possible geo-engineering, and predicting climate variability and change and their consequences. A major challenge is to adequately deal with the continually changing observing system, especially from satellites and other remote sensing platforms such as in the ocean, in order to provide a continuous climate record. Even with new computational tools, challenges remain to provide adequate analysis, processing, meta-data, archival, access, and management of the resulting data and the data products. As volumes of data continue to grow, so do the challenges of distilling information to allow us to understand what is happening and why, and what the implications are for the future. The case is compelling that prompt coordinated international actions are essential to provide for information-based actions and decisions related to climate variability and change.


Climate observing system Satellite observations Climate change Data processing Earth observations Metadata Climate data records 



Advanced Land Observing Satellite


Advanced Earth Observing Satellite


Atmospheric Infrared Sounder


Fourth Assessment Report (IPCC)


Advanced Technology Microwave Sounder


Baseline Surface Radiation Network


Climate Change System Program


Climate Data Record


Committee on Earth Observation Satellites


Clouds and the Earth’s Radiant Energy System


Climate and Forecast


Coordination Group for Meteorological Satellites


Climate Absolute Radiance and Refractivity Observatory


Constellation Observing System for Meteorology, Ionosphere and Climate


Crosstrack Infrared Sounder


Deformation, Ecosystem Structure, and Dynamics of Ice


Department of Defense


Earth, Cloud, Aerosol, Radiation and Energy


European Centre for Medium-range Weather Forecasts


Essential Climate Variable


El Niño-Southern Oscillation


Earth Observing System


ECMWF Re-Analysis


European Space Agency


European Organisation for the Exploitation of Meteorological Satellites


Fraction of Absorbed Photosynthetically Active Radiation


Global Atmospheric Watch


Global Change Observation Mission (JAXA)


Global Climate Observing System


GCOS Climate Monitoring Principles


Group on Earth Observations


Global Earth Observation System of Systems


Global Energy and Water Exchanges (WCRP)


Global Framework for Climate Services


Global Monitoring for Environment and Security


Global Navigation Satellite System


Geosynchronous Operational Environmental Satellite


Global Ocean Observing System


Global Observing System


Greenhouse Gases Observation Satellite (JAXA)


Global Precipitation Mission


Global Positioning System


GCOS Reference Upper-Air Network


Global Space-based Intercalibration System


Global Terrestrial Observing System


Ice, Cloud, and Land Elevation Satellite


International Council for Science


International Geosphere-Biosphere Programme


WMO Integrated Global Data Dissemination Service


Intergovernmental Oceanographic Commission


Intergovernmental Panel on Climate Change


Japan Aerospace Exploration Agency


Japanese Meteorological Agency


Joint Polar Satellite System


Leaf Area Index


Medium Resolution Imaging Spectrometer


Modern Era Retrospective-Analysis for Research and Applications


Moderate Resolution Imaging Spectro-radiometer (NASA)


National Aeronautics and Space Administration


National Center for Atmospheric Research


National Climatic Data Center (NOAA)


National Oceanic and Atmospheric Administration


National Polar-Orbiting Operational Environmental Satellite System


NPOESS Preparatory Project


National Research Council (USA)


Numerical Weather Prediction


Orbiting Carbon Observatory


Ozone Mapping and Profiler Suite


Observing System Experiment


Observing System Simulation Experiment


Reducing Emissions from Deforestation and Forest Degradation


Synthesis and Assessment Products


Subsidiary Body for Scientific and Technological Advice


Sustained Co-Ordinated Processing of Environmental satellite data for Climate Monitoring


International System of units (Système International)


Soil Moisture Active/Passive


State of Climate


Top of Atmosphere


Traceable Radiometry Underpinning Terrestrial- and Helio-Studies


United Nations Environment Programme


United Nations Framework Convention on Climate Change


United States Global Change Research Program


Visible/Infrared Imager/Radiometer Suite


World Climate Conference-3


World Climate Research Programme


WCRP Data Advisory Council


Working Group


World Meteorological Organization


WCRP Observation and Assimilation Panel



We thank Adrian Simmons for substantial comments and suggestions. The National Center for Atmospheric Research is sponsored by the National Science Foundation.


  1. Anthes RA (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103. doi: 10.5194/amt-4-1077-2011 CrossRefGoogle Scholar
  2. Brink AB, Eva HD (2009) Monitoring 25 years of land cover change dynamics in Africa: a sample based remote sensing approach. Appl Geogr 29:501–512CrossRefGoogle Scholar
  3. Brönnimann S, Ewen T, Luterbacher J, Diaz HF, Stolarski R, Neu U (2008) A focus on climate during the past 100 years. In: Brönnimann SJ, Luterbacher, Ewen T, Diaz HF, Stolarski R, Neu U (eds) Climate variability and extremes during the past 100 years. Adv Global Change Res 33:1–25Google Scholar
  4. CEOS (2008) EO handbook 2008. Climate change special edition 2008.
  5. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903CrossRefGoogle Scholar
  6. Feldman DR, Algieri CA, Ong JR, Collins WD (2011) CLARREO shortwave observing system simulation experiments of the twenty-first century: simulator design and implementation. J Geophys Res 116:D10107. doi: 10.1029/2010JD015350 CrossRefGoogle Scholar
  7. GCOS (2003) The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS-82, WMO-TD/No. 1143. WMO, Geneva, 74 ppGoogle Scholar
  8. GCOS (2007) GCOS Reference Upper-Air Network (GRUAN): justification, requirements, siting and instrumentation options. GCOS-12, WMO-TD/No. 1379, WMO, Geneva, 25 ppGoogle Scholar
  9. GCOS (2009) Progress report on the implementation of the global observing system for climate in support of the UNFCCC 2004–2008. GCOS-129, WMO-TD/No. 1489, GOOS-173, GTOS-70.
  10. GCOS (2010) Implementation plan for the global observing system for climate in support of the UNFCCC. GCOS-138, Geneva, 180 ppGoogle Scholar
  11. GEO (Group on Earth Observations) (2005) The Global Earth Observation System of Systems (GEOSS) 10-Year Impl Plan.
  12. GEO (2010) A quality assurance framework for Earth observation: Principles. V4, Jan 2010.
  13. Gleick P, Cooley H, Famiglietti J, Lettenmaier D, Oki T, Vörösmarty C, Wood E (2013) Improving understanding of the global hydrological cycle. In: Asrar GR, Hurrell JW (eds) Climate science for serving society: research, modelling and prediction priorities, Springer, in pressGoogle Scholar
  14. Gobron N, Pinty B, Aussedat O, Chen J, Cohen WB, Fensholt R, Gond V, Hummerich KF, Lavergne T, Mélin F, Privette JL, Sandholt I, Taberner M, Turner DP, Verstraete MM, Widlowski J-L (2006) Evaluation FAPAR products for different canopy radiation transfer regimes: methodology and results using JRC products derived from SeaWiFS against ground-based estimations. J Geophys Res 111:D13110. doi: 10.1029/2005JD006511 CrossRefGoogle Scholar
  15. Gobron N, Pinty B, Aussedat O, Taberner M, Faber O, Mélin F, Lavergne T, Robustelli M, Snoeij P (2008) Uncertainty estimates for the FAPAR operational products derived from MERIS – impact of top-of-atmosphere radiance uncertainties and validation with field data. Remote Sens Environ 112:1871–1883. doi: 10.1016/j.rse.2007.09.011 CrossRefGoogle Scholar
  16. Gobron N, Knorr W, Belward AS, Pinty B (2010) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). In: state of the climate in 2009. Bull Am Meteorol Soc 91:S50–S52Google Scholar
  17. Goldberg M, Coauthors (2011) The global space-based inter-calibration system. Bull Am Meteorol Soc 92:467–475Google Scholar
  18. GSICS (2006) Implementation plan for a Global Space-based Inter-calibration System (GSICS). WMO-CGMS, WMO, Geneva, 22 ppGoogle Scholar
  19. Ho S-P, He W, Kuo Y-H (2009) Construction of consistent temperature records in the lower stratosphere using Global Positioning System radio occultation data and microwave sounding measurements. In: Steiner AK, Pirscher B, Foelsche U, Kirchengast G (eds) New horizons in occultation research. Springer, Berlin, pp 207–217CrossRefGoogle Scholar
  20. Ho S-P, Kuo Y-H, Schreiner W, Zhou X (2010) Using SI-traceable Global Positioning System Radio Occultation measurements for climate monitoring. In: state of the climate in 2009. Bull Am Meteorol Sci 91:S36–S37Google Scholar
  21. Huang Y, Leroy S, Gero PJ, Dykema J, Anderson J (2010) Separation of longwave climate feedbacks from spectral observations. J Geophys Res 115:D07104. doi: 10.1029/2009JD012766 CrossRefGoogle Scholar
  22. IPCC (Intergovernmental Panel on Climate Change) (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996 ppGoogle Scholar
  23. Jin Z, Wielicki BA, Loukachine C, Charlock TP, Young D, Noël S (2011) Spectral kernel approach to study radiative response of climate variables and interannual variability of reflected solar spectrum. J Geophys Res 116:D10113. doi: 10.1029/2010JD015228 CrossRefGoogle Scholar
  24. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan GB, Cescatti A, Chen J, Running S et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954CrossRefGoogle Scholar
  25. Justice CO, Giglio L, Roy D, Boschetti L, Csiszar I, Davies D, Korontzi S, Schroeder W, O’Neal K, Morisette J (2011) MODIS-derived global fire products. Remote Sens Digit Image Process 11(Pt. 5):661–679. doi: 10.1007/978-1-4419-6749-7_29 Google Scholar
  26. Karl TR, Diamond HJ, Bojinski S, Butler JH, Dolman H, Haeberli W, Harrison DE, Nyong A, Rösner S, Seiz G, Trenberth KE, Westermeyer W, Zillman J (2010) Observation needs for climate information, prediction and application: capabilities of existing and future observing systems. In: World Climate Conference-3, Elsevier, Procedia Environmental Sciences 1, pp 192–205. doi: 10.1016/j.proenv.2010.09.013
  27. Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998) Synergistic algorithm for estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J Geophys Res 103(32):32,257–32,276Google Scholar
  28. Leroy SS, Anderson JG, Ohring G (2008) Climate signal detection times and constraints on climate benchmark accuracy requirements. J Clim 21:841–846CrossRefGoogle Scholar
  29. Loeb NG, Wielicki BA, Wong T, Parker PA (2009) Impact of data gaps on satellite broadband radiation records. J Geophys Res 114:D11109. doi: 10.1029/2008JD011183 CrossRefGoogle Scholar
  30. Luntama J-P, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh E, Marquardt C (2008) Prospects of the EPS GRAS mission for operational atmospheric applications. Bull Am Meteorol Soc 89:1863–1875CrossRefGoogle Scholar
  31. Manton MJ, Belward A, Harrison DE, Kuhn A, Lefale P, Rösner S, Simmons A, Westermeyer W, Zillman J (2010) Observation needs for climate services and research. World Climate Conference-3, Elsevier, Procedia Environmental Sciences 1, pp 184–191. doi: 10.1016/j.proenv.2010.09.012
  32. National Research Council (NRC) (2004) Climate data records from Environmental Satellites. National Academies Press, Washington DC, 150 pp. ISBN:0-309-09168-3Google Scholar
  33. NRC (2007) Earth science and applications from space: national imperatives for the next decade and beyond. National Academies Press, Washington DC, 428 pp. ISBN-10: 0-309-14090-0Google Scholar
  34. NRC (2008) Earth observations from space-the first 50 years of scientific achievements. National Academies Press, Washington, DC, 129 ppGoogle Scholar
  35. NRC (2012) Earth science and applications from space-a midterm assessment of NASA’s implementation of the decadal survey. National Academies Press, Washington DC, 124 pp. ISBN-10: 0-309-25702-6Google Scholar
  36. Ohring et al (2007) Achieving satellite instrument calibration for climate change. Eos Trans AGU 88(11):136.
  37. Poli P, Healy SB, Dee DP (2011) Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Q J R Meteorol Soc 136:1970–1990Google Scholar
  38. Privette J, Barkstrom B, Bates J, Bonadonna M, Boyd K, Cecil D-W, Cramer B, Davis G, Karl T, Kaye J, Koblinsky C, Tanner M, Young D (2008) Restoration of NPOESS climate capabilities–climate data records. 4th symposium future national operational environmental satellite systems, The 88th AMS Annual Meeting, New Orleans.
  39. Running SW (2008) Ecosystem disturbance, carbon, and climate. Science 321:652–653CrossRefGoogle Scholar
  40. Schneider AM, Friedl A, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ Res Lett 4:44003. doi: 10.1088/1748-9326/4/4/044003 CrossRefGoogle Scholar
  41. Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115:D01110. doi: 10.1029/2009JD012442 CrossRefGoogle Scholar
  42. SOC (State of the Climate) (2009) Report at a glance. NOAA.
  43. Solomon S, Plattner G-K, Knuttic R, Friedlingstein P (2009) Irreversible climate change because of carbon dioxide emissions. PNAS 106:1704–1709. doi: 10.1073_pnas.0812721106 CrossRefGoogle Scholar
  44. Steiner AK, Lackner BC, Ladstädter F, Scherllin-Pirscher B, Foelsche U, Kirchengast G (2011) GPS radio occultation for climate monitoring and change detection. Radio Sci 46:RS0D24. doi: 10.1029/2010RS004614 CrossRefGoogle Scholar
  45. Trenberth KE (2008) Observational needs for climate prediction and adaptation. WMO Bull 57:17–21Google Scholar
  46. Trenberth KE (2011) Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip Rev Clim Change 2(6):925–930. doi: 10.1002/wcc.142 CrossRefGoogle Scholar
  47. Trenberth KE, Karl TR, Spence TW (2002) The need for a systems approach to climate observations. Bull Am Meteorol Soc 83:1593–1602CrossRefGoogle Scholar
  48. Trenberth KE, Moore B, Karl TR, Nobre C (2006) Monitoring and prediction of the Earth’s climate: a future perspective. J Clim 19:5001–5008CrossRefGoogle Scholar
  49. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323CrossRefGoogle Scholar
  50. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24:4907–4924. doi: 10.1175/2011JCLI4171.1 CrossRefGoogle Scholar
  51. USGCRP (2003) Strategic plan for the U.S. climate change science program, July 2003, Chapter 12, observing and monitoring the climate system, Washington DC, 142 ppGoogle Scholar
  52. Vey S, Dietrich R, Rülke A, Fritsche M, Steigenberger P, Rothatcher M (2010) Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J Clim 23:1675–1695. doi: 10.1175/2009JCLI2787.1 CrossRefGoogle Scholar
  53. Wang J, Zhang L (2009) Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. J Geod 83:209–217. doi: 10.1007/s00190-008-0238-5 CrossRefGoogle Scholar
  54. Wilson J, Dowell M, Belward AS (2010) European capacity for monitoring and assimilating space-based climate change observations–Status and Prospects. Publ Off Eur Union, JRC54704, 40 pp. ISBN: 978-92-79-15154-5Google Scholar
  55. World Meteorological Organization (2011) Climate knowledge for action: a global framework for climate services – empowering the most vulnerable, WMO/TD-No. 1065, Geneva, p 240Google Scholar
  56. Zhao M, Running SW (2010) Drought induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943CrossRefGoogle Scholar
  57. Zibordi G, Holben B, Melin F, D’Alimonte D, Berthon J-F, Slutsker I, Giles D (2010) AERONET-OC: an overview. Can J Remote Sens 36:488–497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kevin E. Trenberth
    • 1
    Email author
  • Richard A. Anthes
    • 2
  • Alan Belward
    • 3
  • Otis B. Brown
    • 4
    • 5
  • Ted Habermann
    • 6
  • Thomas R. Karl
    • 6
  • Steve Running
    • 7
  • Barbara Ryan
    • 8
  • Michael Tanner
    • 6
  • Bruce Wielicki
    • 9
  1. 1.Climate and Global DynamicsNational Center for Atmospheric ResearchBoulderUSA
  2. 2.University Corporation for Atmospheric ResearchBoulderUSA
  3. 3.Institute for Environment and SustainabilityJoint Research Centre of the European Commission, Joint Research CentreIspraItaly
  4. 4.Cooperative Institute for Climate and Satellites – North Carolina (CICS-NC)North Carolina State UniversityAshevilleUSA
  5. 5.NOAA’s National Climatic Data CenterAshevilleUSA
  6. 6.National Environmental Satellite, Data, and Information Service (NESDIS), NOAABoulderUSA
  7. 7.Numerical Terradynamic Simulation Group (NTSG), CHCB room 428The University of MontanaMissoulaUSA
  8. 8.GEO SecretariatGeneva 2Switzerland
  9. 9.NASA Langley Research CenterHamptonUSA

Personalised recommendations