Carbon Dioxide and Climate: Perspectives on a Scientific Assessment

  • Sandrine BonyEmail author
  • Bjorn Stevens
  • Isaac H. Held
  • John F. Mitchell
  • Jean-Louis Dufresne
  • Kerry A. Emanuel
  • Pierre Friedlingstein
  • Stephen Griffies
  • Catherine Senior


Many of the findings of the Charney Report on CO2-induced climate change published in 1979 are still valid, even after 30 additional years of climate research and observations. This paper considers the reasons why the report was so prescient, and assesses the progress achieved since its publication. We suggest that emphasis on the importance of physical understanding gained through the use of theory and simple models, both in isolation and as an aid in the interpretation of the results of General Circulation Models, provided much of the authors’ insight at the time. Increased emphasis on these aspects of research is likely to continue to be productive in the future, and even to constitute one of the most efficient routes towards improved climate change assessments.


Climate change assessment Charney report Hierarchical climate modeling Physical understanding Climate projections Climate processes, forcings and feedbacks General circulation models 



We thank Hervé Le Treut and Amy Dahan-Dalmedico for valuable comments and discussions with who helped us put the discussions of this opinion paper into an historical context. We are grateful to V. Ramaswamy, two anonymous reviewers and several participants of the WCRP Open Science Conference (Denver, CO, October 2011) for thorough comments and suggestions that helped improve the manuscript. This paper was supported by the French ANR project ClimaConf.


  1. Andrews T, Forster PM (2008) CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys Res Lett 35, L04802. doi: 10.1029/2007GL032273 CrossRefGoogle Scholar
  2. Banks HT, Gregory JM (2006) Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys Res Lett 33(7), L07608. doi: 10.1029/2005gl025352 CrossRefGoogle Scholar
  3. Bolin B, Degens ET, Kempe S, Ketner P (eds) (1979) The global carbon cycle. SCOPE 13, Scientific Committee on Problems of the Environment, International Council of Scientific Unions, Wiley, New York, 491 ppGoogle Scholar
  4. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes ? J Clim 19(15):3445–3482CrossRefGoogle Scholar
  5. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci. doi:  10.1038/ngeo1799
  6. Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res 115, D23113CrossRefGoogle Scholar
  7. Brient F, Bony S (2013) Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim Dyn 40(9–10):2415–2431. doi: 10.1007/s00382-011-1279-7. ISSN: 0930-7575
  8. Caldeira K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299:2052–2054CrossRefGoogle Scholar
  9. Charney JG, Coauthors (1979) Carbon dioxide and climate: a scientific assessment. National Academy of Science, Washington, DC, 22 ppGoogle Scholar
  10. Church JA, Godfrey JS, Jackett DR, McDougall TJ (1991) A model of sea-level rise caused by ocean thermal expansion. J Cli 4(4):438–456CrossRefGoogle Scholar
  11. Collins WD et al (2006) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4). J Geophys Res 111, D14317. doi: 10.1029/2005JD006713 CrossRefGoogle Scholar
  12. Colman RA, McAvaney BJ (2010) On tropospheric adjustment to forcing and climate feedbacks. Clim Dyn 36(9–10):1649–1658Google Scholar
  13. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  14. Dahan-Dalmedico A (2001) History and epistemology of models: meteorology (1946–1963) as a case study. Arch Hist Exact Sci 55:395–422, Springer, pp 395–422Google Scholar
  15. Delmas RJ, Ascencio J-M, Legrand M (1980) Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature 284:155–157CrossRefGoogle Scholar
  16. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin Q, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change, 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  17. Dufresne J-L, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled ocean-atmosphere models. J Clim 21(19):5135–5144CrossRefGoogle Scholar
  18. Dufresne J-L, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10). doi: 10.1029/2001GL013777A CrossRefGoogle Scholar
  19. Eitzen ZA, Xu KM, Wong T (2009) Cloud and radiative characteristics of tropical deep convective systems in extended cloud objects from CERES observations. J Clim 22:5983–6000CrossRefGoogle Scholar
  20. Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of mesoscale eddies in the rectification of the Southern ocean response to climate change. J Phys Oceanogr 40:1539–1557. doi: 10.1175/2010JPO4353.1 CrossRefGoogle Scholar
  21. Frank DC, Esper J, Raible CC, Buntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–530CrossRefGoogle Scholar
  22. Freeland H et al (2010) Argo – a decade of progress. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 Sept 2009. ESA Publication WPP-306, Roma. doi: 10.5270/OceanObs09.cwp.32
  23. Friedlingstein P et al (2006) Climate – carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Clim 19:3337–3353CrossRefGoogle Scholar
  24. Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3:811–812CrossRefGoogle Scholar
  25. Gregory JM, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21:58–71CrossRefGoogle Scholar
  26. Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31, L03205. doi: 10.1029/2003GL018747 CrossRefGoogle Scholar
  27. Griffies S et al (2010) Problems and prospects in large-scale ocean circulation models. In: Hall J, Harrison D E, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, Italy, 21–25 Sept 2009. ESA Publication WPP-306, Roma. doi: 10.5270/OceanObs09.cwp.38
  28. Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33, L03502. doi: 10.1029/2005GL025127 CrossRefGoogle Scholar
  29. Hannart A, Dufresne J-L, Naveau P (2009) Why climate sensitivity may not be so unpredictable. Geophys Res Lett 36, L16707. doi: 10.1029/2009GL039640 CrossRefGoogle Scholar
  30. Hansen JE, Sato M (2011) Paleoclimate implications for human-made climate change. In: Berger A, Mesinger F, Šijački D (eds) Climate change at the eve of the second decade of the century: inferences from paleoclimate and regional aspects: Proceedings of Milutin Milankovitch 130th anniversary symposium. Springer.Google Scholar
  31. Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. In: Climate processes and climate sensitivity, Geophysical Monograph. American Geophysical Union, Washington, DC, pp 130–163CrossRefGoogle Scholar
  32. Hansen J, Sato M, Nazarenko L, Ruedy R, Lacis A, Koch D, Tegen I, Hall T, Shindell D, Santer B, Stone P, Novakov T, Thomason T, Wang R, Wang Y, Jacob D, Hollandsworth S, Bishop L, Logan J, Thompson A, Stolarski R, Lean J, Willson R, Levitus S, Antonov J, Rayner N, Parker D, Christy J (2002) Climate forcings in Goddard Institute for space studies SI2000 simulations. J Geophys Res 107(D18):4347. doi: 10.1029/2001JD001143 CrossRefGoogle Scholar
  33. Hartmann DL, Larson K (2002) An important constraint on tropical cloud-climate feedback. Geophys Res Lett 29:1951–1954CrossRefGoogle Scholar
  34. Hartmann DL, Short DA (1980) On the use of earth radiation budget statistics for studies of clouds and climate. J Atmos Sci 37:1233–1250CrossRefGoogle Scholar
  35. Held IM (2005) The gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc 86:1609–1614CrossRefGoogle Scholar
  36. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19:5686–5699. doi: 10.1175/JCLI3990.1 CrossRefGoogle Scholar
  37. Held IM, Hemler RS, Ramaswamy V (1993) Radiative-convective equilibrium with explicit two-dimensional moist convection. J Atmos Sci 50:3909–3927CrossRefGoogle Scholar
  38. Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6(8):1587–1606CrossRefGoogle Scholar
  39. Kuang Z, Hartmann DL (2007) Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J Clim 20:2051–2057CrossRefGoogle Scholar
  40. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House J, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GPII, Prentice C, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, Van Der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  41. Legg S et al (2009) Improving oceanic overflow representation in climate models: the gravity current entrainment climate process team. Bull Am Meteorol Soc 90:657–670CrossRefGoogle Scholar
  42. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi: 10.1038/nature09043 CrossRefGoogle Scholar
  43. MacDonald GF, Abarbanel H, Carruthers P, Chamberlain J, Foley H, Munk W, Nierenberg W, Rothaus O, Ruderman M, Vesecky J, Zachariasen F (1979) The long term impact of atmospheric carbon dioxide on climate, JASON technical report JSR-78-07, SRI International, ArlingtonGoogle Scholar
  44. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259CrossRefGoogle Scholar
  45. Manabe S, Wetherald RT (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15CrossRefGoogle Scholar
  46. Meehl GA et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  47. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1:360–364CrossRefGoogle Scholar
  48. Mitchell JFB, Ingram WJ (1992) Carbon dioxide and climate: mechanisms of changes in cloud. J Clim 5:5–21CrossRefGoogle Scholar
  49. Myhre G, Myhre A, Stordal F (2001) Historical time evolution of total radiative forcing. Atmos Environ 35:2361–2373CrossRefGoogle Scholar
  50. Ramanathan V, Lian MS, Cess RD (1979) Increased atmospheric CO2: zonal and seasonal estimates of the effect on radiative energy balance and surface temperature. J Geophys Res 84(C8):4949–4958CrossRefGoogle Scholar
  51. Randall DA et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  52. Rieck M, Nuijens L, Stevens B (2012) Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J Atmos Sci 69:2538–2550. doi: 10.1175/JAS-D-11-0203.1 CrossRefGoogle Scholar
  53. Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318(5850):629–632. doi: 10.1029/2009GL039640 CrossRefGoogle Scholar
  54. Shine KP, Cook J, Highwood EJ, Joshi MM (2003) An alternative to radiative forcing for estimating the relative importance of climate change mechanisms. Geophys Res Lett 30(20):2047. doi: 10.1029/2003GL018141 CrossRefGoogle Scholar
  55. Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844CrossRefGoogle Scholar
  56. Somerville RCJ, Remer LA (1984) Cloud optical thickness feedbacks in the CO2 climate problem. J Geophys Res 89(D6):9668–9672. doi: 10.1029/JD089iD06p09668 CrossRefGoogle Scholar
  57. Son S-W, Gerber EP, Perlwitz J, Polvani LM, Gillett N, Seo K-H, CCMVal Co-authors (2010) Impact of stratospheric ozone on the southern hemisphere circulation change: a multimodel assessment. J Geophys Res 115:D00M07. doi: 10.1029/2010JD014271
  58. Trenberth KE, Fasullo JT (2010) Tracking earth’s energy. Science 328:316–317CrossRefGoogle Scholar
  59. Wetherald R, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415CrossRefGoogle Scholar
  60. Williams KD, Ingram WJ, Gregory JM (2008) Time variation of effective climate sensitivity in GCMs. J Clim 21:5076–5090. doi: 10.1175/2008JCLI2371.1 CrossRefGoogle Scholar
  61. Yohe G, Andronova N, Schlesinger M (2004) To hedge or not against an uncertain climate future? Science 306:416–417CrossRefGoogle Scholar
  62. Zelinka MD, Hartmann DL (2010) Why is longwave cloud feedback positive ? J Geophys Res 115, D16117. doi: 10.1029/2010JD013817 CrossRefGoogle Scholar
  63. Zhang M, Bretherton C (2008) Mechanisms of low cloud–climate feedback in idealized single-column simulations with the community atmospheric model, version 3 (CAM3). J Clim 21(18):4859–4878. doi: 10.1175/2008JCLI2237.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sandrine Bony
    • 1
    Email author
  • Bjorn Stevens
    • 2
  • Isaac H. Held
    • 3
  • John F. Mitchell
    • 4
  • Jean-Louis Dufresne
    • 1
  • Kerry A. Emanuel
    • 5
  • Pierre Friedlingstein
    • 6
  • Stephen Griffies
    • 3
  • Catherine Senior
    • 4
  1. 1.Laboratoire de Météorologie Dynamique/IPSL, CNRSPierre & Marie Curie UniversityParisFrance
  2. 2.Max-Planck Institute for MeteorologyHamburgGermany
  3. 3.Geophysical Fluid Dynamics LaboratoryPrinceton UniversityPrincetonUSA
  4. 4.MetOffice/Hadley CenterExeterUK
  5. 5.Massachusetts Institute for TechnologyCambridgeUSA
  6. 6.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations