Advertisement

Assessment of Different Bioenergy Concepts in Terms of Sustainable Development

  • Swantje Eigner-ThielEmail author
  • Meike Schmehl
  • Jens Ibendorf
  • Jutta Geldermann
Chapter

Abstract

This chapter focuses on the assessment of different concepts’ sustainability regarding the energetic use of biomass in rural areas. The aim is to provide decision support, while taking environmental, economic, social, and technical perspectives into consideration. Possible (technical and organisational) concepts include biogas plants operated by electric service providers, a single biogas plant owned by a farmer, or bioenergy villages owned by a village cooperative. We describe the development of suitable ecologic, economic, social and technical criteria to assess the sustainability of different concepts and the adaption of existing indicator systems to the special requirements of sustainable biomass use for energy. The results of this sustainability assessment illustrate the different biomass concepts’ advantages and disadvantages, which are compared by means of multi-criteria decision analysis methods. This decision support tool faciliates the decision process for mayors, district administrators, farmers and investors, who have to choose the most sustainable concept for a certain area. Furthermore, the sustainability assessment of bioenergy concepts has specific requirements with regard to their visualisation if such an assessment is to support the decisions of interested stakeholders in communities.

Keywords

Bioenergy concepts Multi-criteria decision analysis (MCDA) Social criteria Sustainable development Visualisation 

References

  1. Ahl, C., Eigner-Thiel, S., Girschner, W., Karpenstein-Machan, M., Roland, F., Ruppert, H., Ruwisch, V., Sauer, B., Scheffer, K., & Schmuck, P. (2007). Bioenergiedörfer – Dörfer mit Zukunft, Information brochure. Göttingen: Interdisciplinary Centre for Sustainable Development.Google Scholar
  2. Ainsworth, S. (1999). Designing effective multi-representational learning environments (Report no. 58). Nottingham: University of Nottingham, ESRC Centre for research in Development, Instruction and Teaching.Google Scholar
  3. Bandura, A. (1992). Exercise of personal agency through the self-efficacy mechanism. In R. Schwarzer (Ed.), Self-efficacy: Thought control of action (pp. 3–38). Washington, DC: Hemisphere.Google Scholar
  4. Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.Google Scholar
  5. Barron, F. H., & Barret, B. E. (1996). Decision quality used ranked attribute weights. Management Science, 42, 1515–1523.CrossRefGoogle Scholar
  6. Bauböck, R. (2009). Bioenergie im Landkreis Göttingen – GIS-gestützte Biomassenpotenzialabschätzung anhand ausgewählter Energiepflanzen, Triticale und Mais (Band 18). In M. Kappas (Ed.), Erdsicht – Einblicke in geographische und geoinformationstechnische Arbeitsweisen. Stuttgart: Ibidim-Verlag.Google Scholar
  7. Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  8. Bertsch, V., Geldermann, J., Rentz, O., & Raskob, W. (2006). Multi-criteria decision support and stakeholder involvement in emergency management. International Journal of Emergency Management, 3(2/3), 114–130.CrossRefGoogle Scholar
  9. Bertsch, V., Treitz, M., Geldermann, J., & Rentz, O. (2007). Sensitivity analyses in multi-attribute decision support for off-site nuclear emergency and recovery management. International Journal of Energy Sector Management, 1(4), 342–365.CrossRefGoogle Scholar
  10. BioSt-NachV. (2009). Verordnung über Anforderungen an eine nachhaltige Herstellung von flüsssiger Biomasse zur Stromerzeugung. Bundesgesetzblatt Jahrgang 2009, Teil 1, Nr. 46. Bonn.Google Scholar
  11. BMFSJ. (2008). Familienfreundlichkeit als Erfolgsfaktor für die Rekrutierung und Bindung von Fachkräften. Ergebnisse einer repräsentativen Umfrage unter Arbeitgebern und Beschäftigten. Retrieved August 23, 2010, from: http://www.bmfsfj.de/bmfsfj/generator/BMFSFJ/Service/Publikationen/publikationsliste,did=112440.html
  12. BMU (Federal Ministry for the Environment, Nature conservation and Nuclear Safety). (1992). Umweltpolitik. Agenda 21. Konferenz der Vereinten Nationen für Umwelt und Entwicklung im Juni 1992 in Rio de Janeiro. Berlin, Germany.Google Scholar
  13. BMU (Federal Ministry for the Environment, Nature conservation and Nuclear Safety). (2009). German cabinet has approved national biomass action plan. Press release no. 122/09. Berlin, Germany.Google Scholar
  14. Bouwman, A. F., van Vuuren, D. P., Derwent, R. G., & Posch, M. (2002). A global analysis of acidification and eutrophication of terrestrial ecosystems. Water, Air, and Soil Pollution, 141, 349–382.CrossRefGoogle Scholar
  15. Breitschuh, G., Breitschuh, T., & Eckert, H. (2008). Einfluss einer erhöhten Biomasseproduktion auf die Nachhaltigkeitsparameter landwirtschaftlicher Betriebe. In Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL) (Ed.), Ökologische und ökonomische Bewertung nachwachsender Energieträger (pp. 104–116). Darmstadt: KTBL.Google Scholar
  16. Buchholz, T., Rametsteiner, E., Volk, T. A., & Luzardis, V. A. (2009). Multi-criteria analysis for bioenergy systems assessments. Energy Policy, 37(2), 484–495.CrossRefGoogle Scholar
  17. Caspar, S., Kirchmann, A., Seibold, B., & Stieler, S. (2005). Kinder, Konflikt, Karriereknick. Notwendigkeiten und Ansatzpunkte für eine bessere Vereinbarkeit von Familie und Beruf. Tübingen: IAW Forschungsberichte, 65. IMU-Infodienst (2).Google Scholar
  18. Cheng, P. C.-H., Lowe, R. K., & Scaife, M. (2001). Cognitive science approaches to understanding diagrammatic representations. Artificial Intelligence Review, 15, 79–94.CrossRefGoogle Scholar
  19. Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292–305.CrossRefGoogle Scholar
  20. Cox, R., & Brna, P. (1995). Supporting the use of external representations in problem solving: The need for flexible learning environments. Journal of Artificial Intelligence in Education, 6(2/3), 239–302.Google Scholar
  21. Cox, R., Stenning, K., & Oberlander, J. (1994). Graphical effects in learning logic: reasoning, representation and individual differences. In Proceedings of the 16th annual conference of the Cognitive Science Society. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  22. Daly, H. (1999). Wirtschaft jenseits von Wachstum: Die Volkswirtschaftslehre nachhaltiger Entwicklung. Salzburg: Pustet.Google Scholar
  23. DEIAGRA (Dipartimento di Economica ed Ingeneria Agrarie). (2008). The competition between food crops and non food crops for energy. European Parliament, Brussels.Google Scholar
  24. Deicke, M., Ruppert, H., & Schneider, J. (2006). Mining and smelting in the Harz mountains (Germany) – A neverending environmental story. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 45, 237–256.Google Scholar
  25. Delzeit, R., Gömann, H., Holm-Müller, K., Kreins, P., Kretschmer, B., Münch, J., & Peterson, S. (2010). Analysing bioenergy and landuse competition in a coupled modelling system: The role of bioenergy in renewable energy policy in Germany. Kiel: Kiel Institute for the World Economy.Google Scholar
  26. Department for Communities and Local Government. (2009). Multi-criteria analysis: A manual. London: Department for Communities and Local Government.Google Scholar
  27. Dörner, D. (2003). Die Logik des Misslingens – Strategisches Denken in komplexen Situationen. Hamburg: Rowohlt.Google Scholar
  28. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Arvizu, D., Bruckner, T., Christensen, J., Devernay, J. M., Faaij, A., Fischedick, M., Goldstein, B., Hansen, G., Huckerby, J., Jäger-Waldau, A., Kadner, S., Kammen, D., Krey, V., Kumar, A., Lewis, A., Lucon, O., Matschoss, P., Maurice, L., Mitchell, C., Moomaw, W., Moreira, J., Nadai, A., Nilsson, L. J., Nyboer, J., Rahman, A., Sathaye, J., Sawin, J., Schaeffer, R., & Schei, T. (2011). Summary for policy makers. In S. Schlömer, R. Sims, A. Verbruggen, C. von Stechow, K. Urama, R. Wiser, F. Yamba, T. Zwickel, O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. V. Stechow (Eds.), IPCC special report on renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Edwards, W. (1977). How to use multiattribute utility measurement for social decision making. IEEE Transactions on Systems, Man, and Cybernetics, SMC-7, 326–340.CrossRefGoogle Scholar
  30. Edwards, W., & Barron, F. H. (1994). SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behaviour and Human Decision Processes, 60, 306–325.CrossRefGoogle Scholar
  31. Eigner-Thiel, S. (2005). Kollektives Engagement für die Nutzung erneuerbarer Energieträger – Motive, Mobilisierung und Auswirkungen am Beispiel des Aktionsforschungsprojektes “Das Bioenergiedorf”. Hamburg: Kovac.Google Scholar
  32. Eigner-Thiel, S. (2010). Psychologie. In Projektgruppe Bioenergiedörfer (Hrsg.), Das Bioenergiedorf – Voraussetzungen und Folgen einer eigenständigen Wärme- und Stromversorgung durch Biomasse für Landwirtschaft, Ökologie und Lebenskultur im ländlichen Raum. Göttingen: Institut für Bioenergiedörfer Göttingen e.V., Schriftenreihe “Fortschritt neu denken”, Heft 1, 106–149.Google Scholar
  33. Eigner-Thiel, S., & Geldermann, J. (2009). Entscheidungsunterstützung bei der Planung eines Bioenergiedorfes. In J. Geldermann & L. Lauven (Eds.), Einsatz von OR-Verfahren zur Entscheidungsunterstützung. Aachen: Shaker.Google Scholar
  34. Eigner-Thiel, S., & Schmuck, P. (2010). Gemeinschaftliches Engagement für das Bioenergiedorf Jühnde: Ergebnisse einer Längsschnittstudie zu psychologischen Auswirkungen auf die Dorfbevölkerung. Umweltpsychologie, 14(2), 27, 98–120.Google Scholar
  35. European Parliament. (2009). Directive 2009 / 28 EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union.Google Scholar
  36. Ferge, T., Maghun, J., Hafner, K., Mühlberger, F., Davidovic, M., Warnecke, R., & Zimmermann, R. (2005). On-line analysis of gas-phase composition in the combustion chamber and particle emission characteristics during combustion of wood and waste in a small batch reactor. Environmental Science and Technology, 39, 1393–1402.CrossRefGoogle Scholar
  37. Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis – State of the art. Surveys. New York: Springer.Google Scholar
  38. Fleury, A. (2005). Eine Nachhaltigkeitsstrategie für den Energieversorgungssektor – dargestellt am Beispiel der Stromversorgung in Frankreich. Karlsruhe: University of Karlsruhe (TH), French-German Institute for Environmental Research.Google Scholar
  39. Fritsche, U. R., Jenseit, W., & Hochfeld, C. (1999). Methodikfragen bei der Berechnung des Kumulierten Energieaufwands (KEA). Darmstadt: Öko-Institut e.V.Google Scholar
  40. Fritsche, U. R., Hennenberg, K., Hermann, A., Hünecke, K., Schulze, F., Wiegmann, K., et al. (2009). Sustainable bioenergy: Current status and outlook. Darmstadt/Heidelberg: Öko-Institut e.V./Institute for Energy and Environmental Research.Google Scholar
  41. Gallego Schmid, A. (2009). Calculation of LCA characterization factors for terrestrial eutrophication at regional scale. Presentation at the IX Conference “toward the global life cycle economy” 28th September–2nd October 2009. Boston: American Center for Life Cycle Assessment.Google Scholar
  42. Gamba, L. (2008). Erste Modellentwicklung zur nachhaltigen Nutzung von Biomasse. Doctoral dissertation, Technical University Berlin, Germany.Google Scholar
  43. Geldermann, J. (2010). Explanation systems. In D. Rios Insua & S. French (Eds.), e-Democracy: A group decision and negotiation perspective (pp. 241–259). Berlin: Springer.Google Scholar
  44. Geldermann, J., & Rentz, O. (2001). Integrated technique assessment with imprecise information as a support for the identification of best available techniques (BAT). OR Spectrum, 23, 137–157.CrossRefGoogle Scholar
  45. Geldermann, J., & Rentz, O. (2004). The reference installation approach for the techno-economic assessment of emission abatement options and the determination of BAT according to the IPPC-directive. Journal of Cleaner Production, 12, 389–402.CrossRefGoogle Scholar
  46. Geldermann, J., Bertsch, V., Treitz, M., French, S., Papamichail, K. N., & Hämäläinen, R. P. (2009). Multi-criteria decision support and evaluation of strategies for nuclear remediation management. OMEGA – The International Journal of Management Science, 37(1), 238–251.CrossRefGoogle Scholar
  47. Geldermann, J., & Schöbel, A. (2011). On the similarities of some MCDA methods. Journal of Multi-Criteria Decision Analysis, 18(3–4), 219–230.CrossRefGoogle Scholar
  48. Geldermann, J., Jahn, C., Spengler, T., & Rentz, O. (1999). Proposal for an integrated approach for the assessment of cross-media aspects relevant for the determination of “best available techniques” BAT in the European Union. International Journal of Life Cycle Assessment, 4(2), 94–106.CrossRefGoogle Scholar
  49. Girschner, W., & Girschner-Woldt, I. (2007). Diaphane Planung als Modell nachhaltigkeitsorientierter Planungspraxis. In E. J. Krauß, M. Müller, & R. Münchmeier (Eds.), Soziale Arbeit zwischen Ökonomisierung und Selbstbestimmung. Kassel: University Press.Google Scholar
  50. Granoszewski., K., Reise, C., Spiller, A., & Mußhoff, O. (2009). Entscheidungsverhalten landwirtschaftlicher Betriebsleiter bei Bioenergie-Investitionen (Discussion Paper No. 0911). Göttingen: University of Göttingen, Department of Agricultural Economics and Rural Development.Google Scholar
  51. Gromke, U., & Detzel, A. (2006). Ecological comparison of office papers in view of fibrous raw material. Heidelberg: Institute for Energy and Environmental Research.Google Scholar
  52. Guski, R. (2000). Wahrnehmung – eine Einführung in die Psychologie der menschlichen Informationsaufnahme. Stuttgart: Kohlhammer.Google Scholar
  53. Hämäläinen, R. P., & Alaja, S. (2008). The threat of weighting biases in environmental decision analysis. Ecological Economics, 68(1/2), 556–569.CrossRefGoogle Scholar
  54. Heiland, S., Tischer, M., Döring, T., Pahl, T., & Jessel, B. (2003). Indikatoren zur Zielkonkretisierung und Erfolgskontrolle im Rahmen der Lokalen Agenda 21. Berlin: Umweltbundesamt.Google Scholar
  55. Heijungs, R., Guinée, J. B., Huppes, G., Lankreijer, R. M., Udo de Haes, H. A., & Wegener Sleeswijk, A. (1992). Environmental life cycle assessment of products – Backgrounds. Leiden: Centrum voor Milieukunde.Google Scholar
  56. Helsinki Conference. (1993). Second ministerial conference on the protection of forests in Europe. 16–17 June 1993, Helsinki/Finland.Google Scholar
  57. Hewitt, C. N., & Jackson, A. V. (Eds.). (2003). Handbook of atmospheric science. Malden: Blackwell.Google Scholar
  58. Hischier, R., & Gilgen, P. W. (2005). Life cycle assessment databases as part of sustainable development strategies: The example of ecoinvent. In L. M. Hilty, E. K. Seifert, & R. Treibert (Eds.), Information systems for sustainable development (pp. 15–24). Hershey: Idea Group Publishing.Google Scholar
  59. Hoffmann, D. (2007). Regionale Wertschöpfung durch optimierte Nutzung endogener Biomassepotenziale. Doctoral dissertation, Saarland University, Germany.Google Scholar
  60. Hofstetter, P. (1998). Perspectives in life cycle impact assessment; a structured approach to combine models of the technosphere, ecosphere and valuesphere. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  61. Hughes, L. (2003). Climate change and Australia: Trends, projections and impacts. Austral Ecology, 28(4), 423–443.CrossRefGoogle Scholar
  62. Huijbregts, M. A. J., Rombouts, L. J. A., Hellweg, S., Frischknecht, R., Hendriks, J., van de Meent, D., Ragas, A. M. J., Reijnders, L., & Struijs, J. (2006). Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environmental Science and Technology, 40(3), 641–648.CrossRefGoogle Scholar
  63. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making, methods and applications – A state-of-the-art survey. Heidelberg: Springer.CrossRefGoogle Scholar
  64. IEA (International Energy Agency). (2004). Biofuels for transport: An international perspective. Paris: IEA.Google Scholar
  65. IPCC. (2007). Fourth assessment report: Climate change 2007. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), The physical science basis. New York: Cambridge University Press.Google Scholar
  66. Ipsen, D. (1993). Regionale Identität. Überlegungen zum politischen Charakter einer psychosozialen Raumkategorie. Raumforschung und Raumordnung, 51, 9–18.Google Scholar
  67. Jessel, B. (2008). Biodiversity and bioenergy. Presentation at the 9th meeting of the Conference of the Parties (COP 9), 19.-30.05. 2008. Bonn, Germany.Google Scholar
  68. Kempener, R., Beck, J., & Petrie, J. (2009). Design and analysis of bioenergy networks. Journal of Industrial Ecology, 13, 284–305.CrossRefGoogle Scholar
  69. Kimming, M., Sundberg, C., Nordberg, A., Baky, A., Bernesson, S., Norén, O., & Hansson, P. A. (2011). Biomass from agriculture in small-scale combined heat and power plants – A comparative life cycle assessment. Biomass and Bioenergy, 35(4), 1572–1581.CrossRefGoogle Scholar
  70. Kort, J., Collins, M., & Ditsch, D. (1998). A review of soil erosion potential associated with biomass crops. Biomass and Bioenergy, 14(4), 351–359.CrossRefGoogle Scholar
  71. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.CrossRefGoogle Scholar
  72. Leitl, T. (2007). Biomasse, Bestandteil der RWE-Strategie im Bereich erneuerbare Energien. Presentation at the 2nd bioEnergy conference Carinthia, 06.11.2007. Velden, Austria.Google Scholar
  73. Lenz, V. A. (2010). Feinstaubminderung im Betrieb von Scheitholzkaminöfen unter Berücksichtigung der toxikologischen Relevanz. DBFZ Report Nr. 3. Leipzig.Google Scholar
  74. Lobb, D. A., Gary Kachanoski, R., & Miller, M. H. (1999). Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario, Canada. Soil and Tillage Research, 51(3–4), 189–209.CrossRefGoogle Scholar
  75. Malczewski, J. (1999). GIS and multicriteria analysis. New York: Wiley.Google Scholar
  76. Miller, G. A. (1956). The magic number seven plus or minus two: Some limits on our capacity for communicating information. Psychological Review, 63, 81–97.CrossRefGoogle Scholar
  77. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Current state and trends. Washington, DC: Island Press.Google Scholar
  78. Monier V., & Labouze E. (2001). Critical review of existing studies and life cycle analysis on the regeneration and incineration of waste oils. In European Commission, DG Environment.Google Scholar
  79. Munda, G. (1995). Multicriteria evaluation in a fuzzy environment: Theory and applications in ecological economics. Heidelberg: Physika-Verlag.CrossRefGoogle Scholar
  80. Mustajoki, J., Hämäläinen, R. P., & Martunen, M. (2003). Participatory multicriteria decision analysis with Web-HIPRE: A case of lake regulation policy. Environmental Modelling & Software. Vol., 19(6), 537–547.CrossRefGoogle Scholar
  81. Nixon, S. C., Lack, T. J., Hunt, D. T. E., Lallana, C., & Boschet, A. F. (2000). Sustainable use of Europe’s water? Copenhagen: European Environment Agency.Google Scholar
  82. NUTS (2007). Verordnung (EG) Nr. 105/2007 der Kommission vom 1. Februar 2007 zur Änderung der Anhänge der Verordnung (EG) Nr. 1059/2003 des Europäischen Parlaments und des Rates über die Schaffung einer gemeinsamen Klassifikation der Gebietseinheiten für die Statistik.Google Scholar
  83. Oberschmidt, J., Ludwig, J., & Geldermann, J. (2009). Ein modifizierter PROMETHEE-Ansatz zur Lebenszyklus-orientierten Bewertung der Strom- und Wärmeversorgung. In J. Geldermann & L. Lauven (Eds.), Einsatz von OR-Verfahren zur Entscheidungsunterstützung. Aachen: Shaker.Google Scholar
  84. Oberschmidt, J., Geldermann, J., Ludwig, J., & Schmehl, M. (2010). Modified PROMETHEE approach to assessing energy technologies. Special issue: Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector. International Journal of Energy Sector Management, 4(2), 183–212.CrossRefGoogle Scholar
  85. OECD. (2002). Family-friendly policy can generate a range of benefits to society. Retrieved August 23, 2010, from http://www.oecd.org/document/10/0,3343,en_21571361_44315115_1837194_1_1_1_1,00.html
  86. OECD. (2005). Trends and determinants of fertility rates. The role of policies, social, employment and migration (Working Paper No 27). Paris: OECD.Google Scholar
  87. Ott, K. (2003). The case for strong sustainability. In K. Ott & P. Thapa (Eds.), Greifswald’s environmental ethics. Greifswald: Steinbecker Verlag Ulrich Rose.Google Scholar
  88. Page, B., & Rautenstrauch, C. (2001). Environmental informatics-methods, tools and applications in environmental information processing. In C. Rautenstrauch & S. Patig (Eds.), Environmental information systems in industry and public administration (pp. 2–11). Hershey: Idea Group Publishing.Google Scholar
  89. Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B. LLoyd (Eds.), Cognition and categorization (pp. 259–303). Hillsdale: Erlbaum.Google Scholar
  90. Petre, M., & Green, T. R. G. (1993). Learning to read graphics: Some evidence that ‘seeing’ an informational display is an acquired skill. Journal of Visual Languages and Computing, 4, 55–70.CrossRefGoogle Scholar
  91. Pimentel, D. (2006). Soil erosion: A food and environmental threat. Environment, Development and Sustainability, 8, 119–137.CrossRefGoogle Scholar
  92. Projektgruppe Bioenergiedörfer. (2010). Das Bioenergiedorf – Voraussetzungen und Folgen einer eigenständigen Wärme- und Stromversorgung durch Biomasse für Landwirtschaft, Ökologie und Lebenskultur im ländlichen Raum. Göttingen: Institut für Bioenergiedörfer Göttingen e.V., Schriftenreihe “Fortschritt neu denken”, Heft 1.Google Scholar
  93. Rautenstrauch, C. (1999). Betriebliche Umweltinformationssysteme, Grundlagen, Konzepte und Systeme. Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  94. Reul, F. (2002). Entwicklung einer Nachhaltigkeitsstrategie für den Stadtverkehrdas Beispiel Berlin. Doctoral dissertation, Humboldt-University Berlin, Germany. Retrieved July 13, 2009, from http://edoc.hu-berlin.de/dissertationen/reul-frithjof-2002-12-17
  95. Rodrígues, L., Reuter, H. I., & Hengl, T. (2008). A framework to estimate the distribution of heavy metals in European soils. In G. Tóth, L. Montanarella, & E. Rusco (Eds.), Threats to soil quality in Europe (pp. 79–86). Ispra: Joint Research Centre, European Commission.Google Scholar
  96. Roedl, A. (2010). Production and energetic utilization of wood from short rotation coppice – A life cycle assessment. International Journal of Life Cycle Assessment, 15(6), 567–578.CrossRefGoogle Scholar
  97. Rösch, C., Skarka, J., Raab, K., & Stelzer, V. (2009). Energy production from grassland – Assessing the sustainability of different process chains under German conditions. Biomass and Bioenergy, 33(4), 689–700.CrossRefGoogle Scholar
  98. Roth, W.-M., & Bowen, G. M. (1999). Of cannibals, missionaries, and converts: Graphing competencies from grade 8 to professional science inside (classrooms) and outside (field/laboratory). Science, Technology, and Human Values, 24(2), 179–212.CrossRefGoogle Scholar
  99. Ruppert, H., Eigner-Thiel, S., Girschner, W., Karpenstein-Machan, M., Roland, F., Ruwisch, V., Sauer, B., & Schmuck, P. (2008). “Wege zum Bioenergiedorf” – Leitfaden für eine eigenständige Wärme- und Stromversorgung auf Basis von Biomasse im ländlichen Raum. Gülzow: Fachagentur Nachwachsende Rohstoffe.Google Scholar
  100. Rusco, E., Montanarella, L., & Bosco, C. (2008). Soil erosion: A main threats to the soil in Europe. In G. Tóth, L. Montanarella, & E. Rusco (Eds.), Threats to soil quality in Europe European Commission (pp. 37–45). Ispra: Joint Research Centre.Google Scholar
  101. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw Hill.Google Scholar
  102. Schmehl, M., Eigner-Thiel, S., Hesse, M., Ibendorf, J., & Geldermann, J. (2010). Development of an information system for the assessment of different bioenergy concepts regarding sustainable development. In M. G. Teuteberg (Ed.), Corporate environmental management information systems: Advancements and trends (pp. 318–336). Hershey: IGI Global.CrossRefGoogle Scholar
  103. Schmehl, M., Hesse, M., & Geldermann, J. (2012). Ökobilanzielle Bewertung von Biogasanlagen unter Berücksichtigung der niedersächsischen Verhältnisse. Research Paper der Georg-August-Universität Göttingen, Wirtschaftswissenschaftliche Fakultät, Schwerpunkt Unternehmensführung, Professur für Produktion und Logistik, Nr.11, Göttingen.Google Scholar
  104. Schmitz, S. (1995). Ökobilanz für Getränkeverpackungen. Berlin: Umweltbundesamt.Google Scholar
  105. Schmitz, S., & Paulini, I. (1999). Valuation as an element of life cycle assessmentGerman Federal Environmental Agency method for impact indicator standardization, impact category grouping (ranking), and interpretation in accordance with ISO 14042 and 14043. In Federal Environmental Agency, Berlin.Google Scholar
  106. Schmuck, P., Eigner, S., Kaufhold, A., & Krapoth, S. (1998). Psychologische Aspekte von Unternehmensbewertung. Schriftenreihe des Koordinations- und Studienzentrums Frieden und Umwelt, Heft 13. Göttingen, Germany.Google Scholar
  107. SCOPE (Scientific Committee on Problems of the Environment). (1995). Environmental indicators: systematic approach to measuring and reporting on the environment in the context of sustainable development. Discussion paper presented at the workshop “International Consultation of Sustainable Development Indicators”, Ghent. Bruxelles, Belgium: Bureau du Plan.Google Scholar
  108. SEK. (2006). Mitteilung der Kommission an den Rat, das Europäische Parlament, den Europäischen Wirtschafts- und Sozialausschuss und den Ausschuss der Regionen – Ein Fahrplan für die Gleichstellung von Frauen und Männern 2006–2010. Retrieved August 23, 2010, from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0092:FIN:DE:HTML
  109. SETAC. (1996). Towards a methodology for life cycle impact assessment. In Society of environmental toxicology and chemistry, Brussels.Google Scholar
  110. Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B., & Araujo, M. (2011). Consequences of climate change on the tree of life in Europe. Nature, 470(7335), 531–534.CrossRefGoogle Scholar
  111. Treitz, M., Bertsch, V., Schollenberger, H., Geldermann, J., & Rentz, O. (2008). Multi-criteria decision support for process design. International Transactions in Operational Research (accepted), Vol. Special, Issue of the IFORS conference in Hawaii 2005, 10–15 July Honolulu, Hawaii.Google Scholar
  112. Tversky, B. (2000). Some ways maps and diagrams communicate. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition II. Berlin: Springer.Google Scholar
  113. Udo de Haes, H. A. (1996). Towards a methodology for life cycle impact assessment. Brussels: SETAC-Europe.Google Scholar
  114. UNCED. (1992). Earth Summit, United Nations conference on environment and development, Rio de Janeiro, 3–14 June 1992Google Scholar
  115. United Nations. (1987). General Assembly Resolution, 42/187.Google Scholar
  116. Van Haaren, C., & Bathke, M. (2007). Integrated Planning and remuneration of agri-environmental goods and services for the management of sustainable landscapes – Results of a case study in the Fuhrberg region of Germany. Journal of Environmental Management, 89, 209–221.CrossRefGoogle Scholar
  117. Van Loo, S., & Koppejan, J. (Eds.). (2008). Handbook of biomass combustion and co-firing. London: Earthscan.Google Scholar
  118. VDI (1997). Cumulative energy demand – Terms, definitions, methods of calculation. In Verein Deutscher Ingenieure (VDI) (Ed.). Düsseldorf: Beuth Verlag.Google Scholar
  119. Vester, F. (2003). Die Kunst, vernetzt zu denken Ideen und Werkzeug für einen Umgang mit Komplexität Der neue Bericht an den Club of Rome. München: dtv.Google Scholar
  120. Vis, M. W., Vos, J.,& van den Berg, D. (2008). Sustainability criteria & certification systems for biomass production. Final report no. 1386 for the European Commission. BrusselsGoogle Scholar
  121. von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research. Cambridge: Cambridge University Press.Google Scholar
  122. WBGU. (2008). Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen. Zukunftsfähige Bioenergie und nachhaltige Landnutzung. Berlin: Springer.Google Scholar
  123. Weber-Blaschke, G., Frieß, H., Peichl, L., & Faulstich, M. (2002). Aktuelle Entwicklungen bei Umweltindikatorensystemen. Zeitschrift für Umweltwissenschaften und Schadstoffforschung, 14(3), 187–193.CrossRefGoogle Scholar
  124. Wei, B., & Carlson, R. (2002). Practical Pre-Study of GIS application with LCA database SPINE. Presentation at the fifth international conference on Ecobalance, November 6–8, 2002. Tsukuba, Japan.Google Scholar
  125. Weidenmann, B. (Ed.). (1994). Wissenserwerb mit Bildern. Bern: Huber.Google Scholar
  126. Werheit, M. (1996). Indikatoren für eine nachhaltige Entwicklung. Information letter No. 29 of the Independent Institute for Environmental Concerns (UfU), Berlin, Germany.Google Scholar
  127. Wiehe, J., Ruschkowski, E., Rode, M., Kanning, H., & Haaren, C. v. (2009). Auswirkungen des Energiepflanzenanbaus auf die Landschaft am Beispiel des Maisanbaus für die Biogasproduktion in Niedersachsen. Naturschutz und Landschaftsplanung, 41(4), 107–113.Google Scholar
  128. Wilkens, I. (nee Braune), & Schmuck. P (2012). Transdisciplinary evaluation of energy scenarios for a German village using multi-criteria decision analysis. Sustainability, 4(4), 604–629.Google Scholar
  129. World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Geneva: World Health Organization.Google Scholar
  130. Wuppertal-Institut für Klima, Umwelt, Energie. (1997). Zukunftsfähiges Deutschland – ein Beitrag zu einer global nachhaltigen Entwicklung. Basel: Birkhäuser.Google Scholar
  131. Wüste, A., & Schmuck, P. (2012). Bioenergy villages and regions in Germany: An interview study with initiators of communal bioenergy projects on the success factors for restructuring the energy supply of the community. Sustainability, 4(2), 244–256. doi: 10.3390/su4020244. Retrieved December 3, 2012, from http://www.mdpi.com/2071-1050/4/2/244/
  132. Yue, C. Y., & Li, H. (1998). Multi-attribute evaluation for environment, resource and sustainable development. Monitoring and Assessment, 12, 28–30.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Swantje Eigner-Thiel
    • 1
    • 2
    Email author
  • Meike Schmehl
    • 3
  • Jens Ibendorf
    • 1
  • Jutta Geldermann
    • 3
  1. 1.Interdisciplinary Center for Sustainable DevelopmentUniversity of GöttingenGöttingenGermany
  2. 2.HAWK – University of Applied Sciences and Arts GöttingenGöttingenGermany
  3. 3.Department of Production and LogisticsUniversity of GöttingenGöttingenGermany

Personalised recommendations