Thermal Infrared Remote Sensing of Geothermal Systems

Chapter
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 17)

Abstract

In areas of anomalously high crustal heat flow, geothermal systems transfer heat to the Earth’s surface often forming surface expressions such as hot springs, fumaroles, heated ground, and associated mineral deposits. Geothermal systems are increasingly important as sources of renewable energy, or as natural wonders of protected status attracting tourists, and their study is relevant to monitoring deeper magmatic processes. Thermal infrared (TIR) remote sensing provides a unique tool for mapping the surface expressions of geothermal activity as applied to the exploration for new geothermal power resources and long term monitoring studies. In this chapter, we present a review of TIR remote sensing for investigations of geothermal systems. This includes a discussion on the applications of TIR remote sensing to the mapping of surface temperature anomalies associated with geothermal activity, measurements of near-surface heat fluxes associated with these features as input into monitoring and resource assessment, and the mapping of surface mineral indicators of both active and recently active hydrothermal systems.

Keywords

Geothermal System Geothermal Water Geothermal Fluid Geothermal Activity Geothermal Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research by the authors at Pilgrim Hot Springs, Alaska was supported by a Department of Energy Geothermal Technologies Programme (CID: DE-EE0002846; PI: Gwen Holdmann) and the Alaska Energy Authority Renewable Energy Fund Round III. We thank the anonymous reviewers for their thorough evaluation and constructive recommendations for improving this manuscript.

References

  1. Allis RG (1980) Changes in heat flow associated with exploitation of Wairakei geothermal field, New Zealand. N Z J Geol Geophys 24:1–19CrossRefGoogle Scholar
  2. Allis RG, Nash GD et al (1999) Conversion of thermal infrared surveys to heat flow: Comparisons from Dixie Valley, Nevada, and Wairakei, New Zealand. Geotherm Resour Counc Trans 23:499–504Google Scholar
  3. Baldridge AM, Hook SJ et al (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715CrossRefGoogle Scholar
  4. Berk A, Bernstein LS et al (1989) MODTRAN: a moderate resolution model for LOWTRAN7. GL-TR-89-0122. Air Force Geophysics Lab, BedfordGoogle Scholar
  5. Bromley CJ, van Manen SM et al (2010) Monitoring surface geothermal features using time series of aerial and ground-based photographs. American Geophysical Union, Fall Meeting 2010, abstract #IN33B-1308, San FranciscoGoogle Scholar
  6. Bromley CJ, van Manen SM et al (2011) Heat flux from steaming ground: reducing uncertainties. In: Thirty-sixth workshop on geothermal reservoir engineering. Stanford University, StanfordGoogle Scholar
  7. Carter AJ, Girina O et al (2008) ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia. Remote Sens Environ 112(5):2569–2577CrossRefGoogle Scholar
  8. Christensen PR, Bandfield JL et al (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res 105(E4):9735–9739CrossRefGoogle Scholar
  9. Coolbaugh MF, Shevenell LA (2004) A method for estimating undiscovered geothermal resources in Nevada and The Great Basin. Geotherm Resour Counc Trans 28:13–18Google Scholar
  10. Coolbaugh MF, Kratt C et al (2007) Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sens Environ 106(3):350–359CrossRefGoogle Scholar
  11. DiPippio R (2005) Geothermal power plants: principles, applications and case studies. Elsevier, Kidlington, Oxford, UKGoogle Scholar
  12. Eneva M, Coolbaugh M (2009) Importance of elevation and temperature inversions for the interpretation of thermal infrared satellite images used in geothermal exploration. Geotherm Resour Counc Trans 33Google Scholar
  13. Eneva M, Coolbaugh M et al (2006) Application of satellite thermal infrared imagery to geothermal exploration in East Central California. Geotherm Resour Counc Trans 30Google Scholar
  14. Eneva M, Coolbaugh MF et al (2007) In search for thermal anomalies in the coso geothermal field (California) using remote sensing and field data. In: Thirty-second workshop on geothermal reservoir engineering. Stanford University, StanfordGoogle Scholar
  15. Fridleifsson IB, Bertani R et al (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. IPCC scoping meeting on renewable energy sources, Luebeck, GermanyGoogle Scholar
  16. Gillespie A, Rokugawa S et al (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36(4):1113–1126CrossRefGoogle Scholar
  17. Glassley WE (2010) Geothermal energy: renewable energy and the environment. CRC Press, Boca RatonCrossRefGoogle Scholar
  18. Hackwell JA, Warren DW et al (1996) LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. SPIE, BellinghamGoogle Scholar
  19. Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Haselwimmer CE, Prakash A (2011) Use of airborne thermal imaging to quantify heat flux and flow rate of surface geothermal fluids at Pilgrim Hot Springs, Alaska. AGU Fall Meeting 2011, San FranciscoGoogle Scholar
  21. Haselwimmer CE, Prakash A et al (2011) Geothermal exploration at Pilgrim Hot Springs, Alaska using airborne thermal infrared remote sensing. Geothermal Resource Council annual meeting 2011, San DiegoGoogle Scholar
  22. Heasler H, Jaworowski C et al (2009) Geothermal systems and monitoring hydrothermal features. In: Young R, Norby L (eds) Geological monitoring. Geological Society of America, BoulderGoogle Scholar
  23. Hellman MJ, Ramsey MS (2004) Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing. J Volcanol Geotherm Res 135(1–2):195–219CrossRefGoogle Scholar
  24. Hodder DT (1970) Application of remote sensing to geothermal prospecting. Geothermics 1:368–380CrossRefGoogle Scholar
  25. Hook SJ, Myers JJ et al (2001) The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76(1):93–102CrossRefGoogle Scholar
  26. Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42(3):501–513CrossRefGoogle Scholar
  27. Huntington JF (1996) The role of remote sensing in finding hydrothermal mineral deposits on Earth. In: Evolution of hydrothermal ecosystems on Earth (and Mars?), Ciba foundation symposium 202. Wiley, Chichester, pp 214–235Google Scholar
  28. Johnson BR (1998) In scene atmospheric compensation: application to SEBASS data collected at the ARM site. Part 1. Aerospace corporation technical report, ATR-99 (8407)-1Google Scholar
  29. Kealy PS, Gabell AR (1990) Estimation of emissivity and temperature using alpha coefficients. In: Proceedings of the second TIMS workshop. JPL Publ., vol. 90–95, Jet Propulsion Laboratory, Pasadena, CA, pp 11–15Google Scholar
  30. Kienholz C, Prakash A et al (2009) Geothermal exploration in Akutan, Alaska, using multitemporal thermal infrared images. American Geophysical Union, Fall Meeting 2009, abstract #H53F-1009, San FranciscoGoogle Scholar
  31. Kratt C, Calvin W et al (2006a) Geothermal exploration with Hymap hyperspectral data at Brady–Desert Peak, Nevada. Remote Sens Environ 104(3):313–324CrossRefGoogle Scholar
  32. Kratt C, Coolbaugh MF et al (2006b) Remote detection of quaternary borate deposits with ASTER satellite imagery as a geothermal exploration tool. Geotherm Resour Counc Trans 30Google Scholar
  33. Kruse FA (2002) Combined SWIR and LWIR mineral mapping using MASTER/ASTER. In Geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE international, vol. 4. IEEE, pp 2267–2269Google Scholar
  34. Kruse FA, Boardman JW et al (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400CrossRefGoogle Scholar
  35. Landsvirkjun (2012) Hydro and geothermal stations. Retrieved 21 Nov 2012, from http://www.landsvirkjun.com/Company/PowerStations/
  36. Lee K (1978) Analysis of thermal infrared imagery of the Black Rock Desert geothermal area. Q Colo Sch Mines (United States) 73(3):31–43Google Scholar
  37. Littlefield E, Calvin W (2009) Remote sensing for geothermal exploration over Buffalo Valley, NV. Geotherm Resour Counc Trans 33:495–499Google Scholar
  38. Littlefield E, Calvin W (2010) Geothermal exploration using AVIRIS remote sensing data over Fish Lake Valley. Geotherm Resour Counc Trans 34:599–603Google Scholar
  39. Mongillo M (1994) Aerial thermal infrared mapping of the Waimangu-Waiotapu geothermal region, New Zealand. Geothermics 23(5/6):511–526CrossRefGoogle Scholar
  40. Mongillo MA, Graham DJ (1999) Quantitative evaluation of airborne video TIR survey imagery. In: Proceedings of the 21st NZ geothermal workshop, University of Auckland, pp 151–156Google Scholar
  41. Nash GD, Johnson GW et al (2004) Hyperspectral detection of geothermal system-related soil mineralogy anomalies in Dixie Valley, Nevada: a tool for exploration. Geothermics 33(6):695–711CrossRefGoogle Scholar
  42. Ninomiya Y, Fu B et al (2005) Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99(1–2):127–139CrossRefGoogle Scholar
  43. Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135(1–2):13–28CrossRefGoogle Scholar
  44. Ramsey MS, Christensen PR (1998) Mineral abundance determination: quantitative deconvolution of thermal emission spectra. J Geophys Res 103(B1):577–596CrossRefGoogle Scholar
  45. Reath KA, Ramsey MS (2011) Hyperspectral thermal infrared analysis of the Salton Sea, CA geothermal field. AGU Fall Meeting 2011, San FranciscoGoogle Scholar
  46. Riley DN, Peppin WA et al (2008) Joint airborne collection of hyperspectral systems: mineral mapping in cuprite in VNIR-SWIR and MWIR-LWIR with 613 spectral channels. Annual general meeting of the Geological Remote Sensing Group 2008, LondonGoogle Scholar
  47. Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data – implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246CrossRefGoogle Scholar
  48. Rybach L (1981) Geothermal systems, conductive heat flow, geothermal anomalies. In: Muffler LJP, Rybach L (eds) Geothermal systems: principles and case histories. Wiley, ChichesterGoogle Scholar
  49. Scherer GJ, Riley DN et al (2009) Geothermal exploration with visible through long wave infrared imaging spectrometers. Clean Technology 2009, HoustonGoogle Scholar
  50. Seielstad C, Queen L (2009) Thermal remote monitoring of the Norris Geyser Basin, Yellowstone National Park. Final report for the National Park Service Cooperative Ecosystem Studies Unit, Agreement no. H1200040001, 38ppGoogle Scholar
  51. Taranik JV, Coolbaugh MF et al (2009) An overview of thermal infrared remote sensing with applications to geothermal and mineral exploration in the Great Basin, Western United States. In: Bedell R, Crosta A, Grunsky E (eds) Remote sensing and spectral geology, Reviews in economic geology 16. Society of Economic Geologists Inc, LittletonGoogle Scholar
  52. Vaughan RG, Calvin WM et al (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85(1):48–63CrossRefGoogle Scholar
  53. Vaughan RG, Hook SJ et al (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158CrossRefGoogle Scholar
  54. Vaughan RG, Keszthelyi LP et al (2011) Measuring and monitoring heat flow and hydrothermal changes in the Yellowstone Geothermal System using ASTER and MODIS thermal infrared data. AGU Fall Meeting 2011, San FranciscoGoogle Scholar
  55. Watson FGR, Lockwood RE et al (2008) Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sens Environ 112(2):471–481CrossRefGoogle Scholar
  56. Wisian KW, Blackwell DD et al (2001) Correlation of surface heat loss and total energy production for geothermal systems. Geotherm Resour Counc Trans 25Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations