Fair-Weather Atmospheric Electrification on Earth

Chapter
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

The electrical processes acting in Earth’s atmosphere away from thunderstorms are described. The concept of a global electrical circuit is introduced, and the general conditions for a global circuit defined.

Keywords

Nucleation Mechanism Cloud Condensation Nucleus Fair Weather Global Circuit Global Electric Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. K.L. Aplin, Composition and measurement of charged atmospheric clusters. Space Sci. Rev. 137(1–4), 213–224 (2008). doi: 10.1007/s11214-008-9397-1 ADSCrossRefGoogle Scholar
  2. K.L. Aplin, Smoke emissions from industrial western Scotland in 1859 inferred from Lord Kelvin’s atmospheric electricity measurements. Atmos. Env. 50, 373–376 (2012). doi: 10.1016/j.atmosenv.2011.12.053 CrossRefGoogle Scholar
  3. K.L. Aplin, R.G. Harrison, The interaction between air ions and aerosol particles in the atmosphere. Inst. Phys. Conf. Series 163, 411–414 (1999)Google Scholar
  4. K.L. Aplin, M. Lockwood, Cosmic ray modulation of infra-red radiation in the atmosphere. Env. Res. Letts. 8, 015026 (6pp) (2013). doi: 10.1088/1748-9326/8/1/015026
  5. S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29(14), 1698 (2002). doi: 10.1029/2002GL015044 ADSCrossRefGoogle Scholar
  6. R.G. Harrison, Long term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911–1981. Atmos. Res. 70(1), 1–19 (2004). doi: 10.1016/j.atmosres.2003.09.007 CrossRefGoogle Scholar
  7. R.G. Harrison, The global atmospheric electrical circuit and climate. Surv. Geophys. 25(5–6), 441–484 (2005). doi: 10.1007/s10712-004-5439-8
  8. R.G. Harrison, The Carnegie curve. Surv. Geophys. 34(2), 209–232 (2012). doi: 10.1007/s10712-012-9210-2
  9. R.G. Harrison, K.L. Aplin, Atmospheric condensation nuclei formation and high-energy radiation. J. Atmos. Sol.-Terr. Phys. 63(17), 1811–1819 (2001). doi: 10.1016/S1364-6826(01)00059-1 ADSCrossRefGoogle Scholar
  10. R.G. Harrison, K.L. Aplin, Nineteenth century Parisian smoke variations inferred from atmospheric electrical observations. Atmos. Env. 37(38), 5319–5324 (2003). doi: 10.1016/j.atmosenv.2003.09.042 CrossRefGoogle Scholar
  11. R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41, 3 (2003). doi: 10.1029/2002RG000114 CrossRefGoogle Scholar
  12. R.G. Harrison, M.H.P. Ambaum, M. Lockwood, Cloud base height and cosmic rays. Proc. Roy. Soc. A. 467(2134), 2777–2791 (2011). doi: 10.1098/rspa.2011.0040 ADSCrossRefGoogle Scholar
  13. J. Kirkby, J. Curtius, J. Almeida et al., Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 7361 (2011). doi: 10.1038/nature10343 CrossRefGoogle Scholar
  14. L. Laakso, T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M. Kulmala, U. Hõrrak, J. Paatero, M. Hanke, F. Arnold, Kinetic nucleation and ions in boreal forest particle formation events. Atmos. Chem. Phys. 4, 2353–2366 (2004). doi: 10.5194/acp-4-2353-2004 Google Scholar
  15. E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. 109, D08204 (2004). doi: 10.1029/2003JD004460 ADSCrossRefGoogle Scholar
  16. D.R. MacGorman, W.D. Rust, The Electrical Nature of Storms (Oxford University Press, Oxford, 1998)Google Scholar
  17. M. Makino, T. Ogawa, Quantitative estimation of global circuit. J. Geophys. Res. 90, D4, 5961–5966 (1985). doi: 10.1029/JD090iD04p05961
  18. J.R. Pierce, P.J. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Letts. 36, L09820 (2009). doi: 10.1029/2009GL037946 ADSCrossRefGoogle Scholar
  19. M.J. Rycroft, S. Israelsson, C. Prince, The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol-Terr. Phys. 62, 1563–1576 (2000). doi: 10.1016/S1364-6826(00)00112-7 ADSCrossRefGoogle Scholar
  20. M.J. Rycroft et al., An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci. Revs. 137, 83–105 (2008). doi: 10.1007/s11214-008-9368-6 ADSCrossRefGoogle Scholar
  21. M.J. Rycroft et al., Global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol-Terr. Phys. 90–91, 198–211 (2012). doi: 10.1016/j.jastp.2012.03.015 CrossRefGoogle Scholar
  22. B.A. Tinsley, R.P. Rohrbaugh, M. Hei, Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res. 59–60, 115–135 (2001). doi: 10.1016/S0169-8095(01)00112-0 CrossRefGoogle Scholar
  23. S.N. Tripathi, R.G. Harrison, Enhancement of contact nucleation by scavenging of charged aerosol. Atmos. Res. 62, 57–70 (2002). doi: 10.1016/S0169-8095(02)00020-0 CrossRefGoogle Scholar
  24. F. Yu, R.P. Turco, From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation. J. Geophys. Res. 106(D5), 4797–4814 (2001). doi: 10.1029/2000JD900539 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations