Advertisement

Cytoglobin and Neuroglobin in the Human Brainstem and Carotid Body

  • C. Di GiulioEmail author
  • S. Zara
  • M. De Colli
  • R. Ruffini
  • A. Porzionato
  • V. Macchi
  • R. De Caro
  • A. Cataldi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 788)

Abstract

The aim of the present study was to evaluate the presence of Neuroglobin (Ngb) and Cytoglobin (Cygb) in the solitary tract nucleus (STN) and in the carotid body of human subjects. Transverse serial sections of formalin-fixed, paraffin-embedded brainstems, taken from six subjects, were investigated. Ngb and Cygb are expressed in both the structures. Differences in expression of Ngb and Cygb among dorsal and ventral area of the STN may be related to their different functions and different metabolic demands. Because the STN plays an important role in the processing of cardiovascular and respiratory reflex inputs, Ngb and Cygb may play an integrative central modulatory action for the two systems.

Keywords

Brain stem Carotid body Chemoreceptors Medulla Neurotransmitter 

Notes

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Allen, M. A., Smith, P. M., & Ferguson, A. V. (1997). Adrenomedullin microinjection into the area postrema increases blood pressure. American Journal of Physiology, 272, 1698–1703.Google Scholar
  2. Andresen, M. C., & Kunze, D. L. (1994). Nucleus tractus solitarius gateway to neural circulatory control. Annual Review Physiology, 56, 93–116.CrossRefGoogle Scholar
  3. Bunn, H. F., & Poyton, R. O. (1996). Oxygen sensing and molecular adaptation to hypoxia. Physiological Reviews, 76, 839–885.PubMedGoogle Scholar
  4. Burmester, T., & Hankeln, T. (2004). Neuroglobin: A respiratory protein of the nervous system. News in Physiological Sciences, 19, 110–113.PubMedGoogle Scholar
  5. Burmester, B., Weich, S., Reinhardt, T., & Hankeln, T. (2000). A vertebrate globin expressed in the brain. Nature, 407, 520–523.PubMedCrossRefGoogle Scholar
  6. Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M. C., Caubergs, R., & Moens, L. (2001). Biochemical characterization and ligand-binding properties of neuroglobin, a novel member of the globin family. Journal of Biological Chemistry, 276, 38949–38955.PubMedCrossRefGoogle Scholar
  7. Di Giulio, C., Bianchi, G., Cacchio, M., Macri, M. A.’., Ferrero, G., Rapino, C., Verratti, V., Piccirilli, M., & Artese, L. (2003). Carotid body HIF-1 alpha, VEGF, and NOS expression during aging and hypoxia. Advances in Experimental Medicine and Biology, 536, 603–610.PubMedCrossRefGoogle Scholar
  8. Gonzalez, C., Almaraz, L., Obeso, A., & Rigual, R. (1994). Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiology Reviews, 74, 829–898.Google Scholar
  9. Lahiri, S., Di Giulio, C., & Roy, A. (2002). Lesson from chronic intermittent and sustained hypoxia. Respiratory Physiology & Neurobiology, 130, 223–233.CrossRefGoogle Scholar
  10. Mammen, P. P., Shelton, J. M., Goetsch, S. C., Williams, S. C., Richardson, J. A., Garry, M. G., & Garry, D. J. (2002). Neuroglobin: A novel member of the globin family is expressed in focal regions of brain. The Journal of Histochemistry and Cytochemistry, 50, 1591–1598.PubMedCrossRefGoogle Scholar
  11. Mifflin, S. W. (1992). Arterial chemoreceptor input to nucleus tractus solitarius. American Journal of Physiology, 263, 368–375.Google Scholar
  12. Mifflin, S. W. (1993). Inhibition of chemoreceptor inputs to nucleus of tractus solitarius neurons during baroreceptor stimulation. American Journal of Physiology, 265, 14–20.Google Scholar
  13. Paton, J. F. (1998). Convergence properties of solitary tract neurones driven synaptically by cardiac vagal afferents in the mouse. Journal of Physiology, 508, 237–252.PubMedCrossRefGoogle Scholar
  14. Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., & Bolognesi, M. (2003). Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure, 3, 1146–1151.Google Scholar
  15. Sander, G. E., Lowe, R. F., Given, M. B., & Giles, T. D. (1989). Interactions between circulating peptides and the central nervous system in hemodynamic regulation. The American Journal of Cardiology, 64, 44–50.CrossRefGoogle Scholar
  16. Silva-Carvalho, L., Paton, J. F., Rocha, I., Goldsmith, G. E., & Spyer, K. M. (1998). Convergence properties of solitary tract neurons responsive to cardiac receptor stimulation in the anesthetized cat. Journal of Neurophysiology, 79, 2374–2382.PubMedGoogle Scholar
  17. Spyer, K. M., & Gourine, A. V. (2009). Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philosophical Transactions of the Royal Society Biological Sciences, 364, 2603–2610.PubMedCrossRefGoogle Scholar
  18. Sun, Y., Jin, K., Mao, X. O., Zhu, Y., & Greenberg, D. A. (2001). Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proceedings of the National Academy of Sciences of the United States of America, 98, 15306–15311.PubMedCrossRefGoogle Scholar
  19. Szilagyi, J. E., & Ferrario, C. M. (1981). Central opiate system modulation of the area postrema pressor pathway. Hypertension, 3, 313–317.PubMedCrossRefGoogle Scholar
  20. Zhu, Y., Sun, Y., Jin, K., & Greenberg, D. A. (2002). Hemin induces neuroglobin expression in neural cells. Blood, 100, 2494–2498.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. Di Giulio
    • 1
    Email author
  • S. Zara
    • 2
  • M. De Colli
    • 2
  • R. Ruffini
    • 1
  • A. Porzionato
    • 3
  • V. Macchi
    • 3
  • R. De Caro
    • 3
  • A. Cataldi
    • 2
  1. 1.Department of Neurosciences and ImagingUniversity of ChietiChietiItaly
  2. 2.Department of PharmacyUniversity of ChietiChietiItaly
  3. 3.Department of Human Anatomy and PhysiologyUniversity of PadovaPadovaItaly

Personalised recommendations