Functional and Topographic Concordance of Right Atrial Neural Structures Inducing Sinus Tachycardia

  • Christian Eickholt
  • Karl Mischke
  • Thomas Schimpf
  • Christian Knackstedt
  • Kira Scherer
  • Danius Pauza
  • Nikolaus Marx
  • Dong-In Shin
  • Malte Kelm
  • Christian Meyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 788)

Abstract

Cardiorespiratory autonomic control is in tight interaction with an intracardiac neural network modulating sinus node function. To gain novel mechanistical insights and to investigate possible novel targets concerning the treatment of inadequate sinus tachycardia, we aimed to characterize functionally and topographically the right atrial neural network modulating sinus node function. In 16 sheep 3-dimensional electro-anatomical mapping of the right atrium was performed. In five animals additionally magnetically steered remote navigation was used. Selective stimulation of nerve fibers was conducted by applying high frequency (200 Hz) electrical impulses within the atrial refractory period. Histological analysis of whole heart preparations by acetylcholinesterase staining was performed and compared to the acquired neuroanatomical mapping.

We found that neural stimulation in the cranial part of the right atrium, within a perimeter around the sinus node area, elicited predominantly shortening of the sinus cycle length of −20.3 ± 10.1 % (n = 80, P < 0.05). Along the course of the crista terminalis atrial premature beats (n = 117) and atrial fibrillation (n = 123) could be induced. Catheter stability was excellent during remote catheter navigation. Histological work-up (n = 4) was in accord with the distribution of neurostimulation sites. Ganglions were mainly innervated by the dorsal right-atrial subplexus, with substantial additional input from the ventral right atrial subplexus. In conclusion, our findings suggest a functional and topographic concordance of right atrial neural structures inducing sinus tachycardia. This might open up new avenues in the treatment of heart rate related disorders.

Keywords

Autonomic nervous system Cardiac electrophysiology Cardiac innervation Cardiorespiratory regulation Electrophysiologic mapping Remote magnetic navigation 

Notes

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Bianchi, S., Rossi, P., Della Scala, A., Kornet, L., Pulvirenti, R., Monari, G., Di Renzi, P., Schauerte, P., & Azzolini, P. (2009). Atrioventricular (AV) node vagal stimulation by transvenous permanent lead implantation to modulate AV node function: Safety and feasibility in humans. Heart Rhythm, 6(9), 1282–1286.PubMedCrossRefGoogle Scholar
  2. Drexel, T., Eickholt, C., Mühlsteff, J., Ritz, A., Siekiera, M., Kirmanoglou, K., Schulze, V., Shin, D. I., Balzer, J., Rassaf, T., Kelm, M., & Meyer, C. (2013). Vagal heart rate control in patients with atrial fibrillation: Impact of tonic activation of peripheral chemosensory function in heart failure. Advances in Experimental Medicine and Biology, 755, 287–297.PubMedCrossRefGoogle Scholar
  3. Femenía, F., Baranchuk, A., & Morillo, C. A. (2012). Inappropriate sinus tachycardia: Current therapeutic options. Cardiology in Review, 20(1), 8–14.PubMedCrossRefGoogle Scholar
  4. Guide for the Care and Use of Laboratory Animals. (2008). Washington, DC: National Academies Press. Available from http://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals_prepub.pdf.
  5. Hou, Y., Scherlag, B. J., Lin, J., Zhang, Y., Lu, Z., Truong, K., Patterson, E., Lazzara, R., Jackman, W. M., & Po, S. S. (2007). Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: Effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. Journal of the American College of Cardiology, 50(1), 61–68.PubMedCrossRefGoogle Scholar
  6. Knackstedt, C., Schauerte, P., & Kirchhof, P. (2008). Electro-anatomic mapping systems in arrhythmias. Europace, 10(Suppl 3iii), 28–34.Google Scholar
  7. Lee, R. J., Kalman, J. M., Fitzpatrick, A. P., Epstein, L. M., Fisher, W. G., Olgin, J. E., Lesh, M. D., & Scheinman, M. M. (1995). Radiofrequency catheter modification of the sinus node for “inappropriate” sinus tachycardia. Circulation, 92(10), 2919–2928.PubMedCrossRefGoogle Scholar
  8. Lin, J., Scherlag, B. J., Niu, G., Lu, Z., Patterson, E., Liu, S., Lazzara, R., Jackman, W. M., & Po, S. S. (2009). Autonomic elements within the ligament of Marshall and inferior left ganglionated plexus mediate functions of the atrial neural network. Journal of Cardiovascular Electrophysiology, 20(3), 318–324.PubMedCrossRefGoogle Scholar
  9. Meyer, C., Rana, O. R., Saygili, E., Gemein, C., Becker, M., Nolte, K. W., Weis, J., Schimpf, T., Knackstedt, C., Mischke, K., Hoffmann, R., Kelm, M., Pauza, D., & Schauerte, P. (2010). Augmentation of left ventricular contractility by cardiac sympathetic neural stimulation. Circulation, 121(11), 1286–1294.PubMedCrossRefGoogle Scholar
  10. Pachon, J. C., Pachon, E. I., Pachon, J. C., Lobo, T. J., Pachon, M. Z., Vargas, R. N., & Jatene, A. D. (2005). Cardioneuroablation-new treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace, 7(1), 1–13.PubMedCrossRefGoogle Scholar
  11. Pappone, C., Vicedomini, G., Manguso, F., Gugliotta, F., Mazzone, P., Gulletta, S., Sora, N., Sala, S., Marzi, A., Augello, G., Livolsi, L., Santagostino, A., & Santinelli, V. (2006). Robotic magnetic navigation for atrial fibrillation ablation. Journal of the American College of Cardiology, 47(7), 1390–400.PubMedCrossRefGoogle Scholar
  12. Pauza, D. H., Pauziene, N., Pakeltyte, G., & Stropus, R. (2002a). Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Annals of Anatomy, 184(2), 125–136.PubMedCrossRefGoogle Scholar
  13. Pauza, D. H., Skripka, V., & Pauziene, N. (2002b). Morphology of the intrinsic cardiac nervous system in the dog: A whole-mount study employing histochemical staining with acetylcholinesterase. Cells, Tissues, Organs, 172(4), 297–320.PubMedCrossRefGoogle Scholar
  14. Pokushalov, E., Turov, A., Shugayev, P., Artyomenko, S., Romanov, A., & Shirokova, N. (2008). Catheter ablation of left atrial ganglionated plexi for atrial fibrillation. Asian Cardiovascular & Thoracic Annals, 16(3), 194–201.CrossRefGoogle Scholar
  15. Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., & Katritsis, D. G. (2009). Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm, 6(9), 1257–1264.PubMedCrossRefGoogle Scholar
  16. Saburkina, I., Rysevaite, K., Pauziene, N., Mischke, K., Schauerte, P., Jalife, J., & Pauza, D. H. (2010). Epicardial neural ganglionated plexus of ovine heart: anatomic basis for experimental cardiac electrophysiology and nerve protective cardiac surgery. Heart Rhythm, 7(7), 942–950.PubMedCrossRefGoogle Scholar
  17. Schauerte, P., Mischke, K., Plisiene, J., Waldmann, M., Zarse, M., Stellbrink, C., Schimpf, T., Knackstedt, C., Sinha, A., & Hanrath, P. (2001). Catheter stimulation of cardiac parasympathetic nerves in humans: A novel approach to the cardiac autonomic nervous system. Circulation, 104(20), 2430–2435.PubMedCrossRefGoogle Scholar
  18. Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., & Lazzara, R. (2005). Electrical stimulation to identify neural elements on the heart: Their role in atrial fibrillation. Journal of Interventional Cardiac Electrophysiology: An International Journal of Arrhythmias and Pacing, 13(Suppl), 137–142.Google Scholar
  19. Taketani, T., Wolf, R. K., & Garrett, J. V. (2007). Partial cardiac denervation and sinus node modification for inappropriate sinus tachycardia. The Annals of Thoracic Surgery, 84(2), 652–654.PubMedCrossRefGoogle Scholar
  20. Tzeng, Y. C., Larsen, P. D., & Galletly, D. C. (2007). Mechanism of cardioventilatory coupling: Insights from cardiac pacing, vagotomy, and sinoaortic denervation in the anesthetized rat. American Journal of Physiology. Heart and Circulatory Physiology, 292(4), H1967–1977.PubMedCrossRefGoogle Scholar
  21. White, K., & Taylor, P. (2000). Anaesthesia in sheep. Practice, 22(3), 126–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christian Eickholt
    • 1
  • Karl Mischke
    • 2
  • Thomas Schimpf
    • 2
  • Christian Knackstedt
    • 2
  • Kira Scherer
    • 3
  • Danius Pauza
    • 4
  • Nikolaus Marx
    • 2
  • Dong-In Shin
    • 1
  • Malte Kelm
    • 1
  • Christian Meyer
    • 1
  1. 1.Department of Cardiology, Pulmology and Angiology, Medical FacultyHeinrich-Heine-University DuesseldorfDuesseldorfGermany
  2. 2.Division of Cardiology, Pulmology and AngiologyUniversity Hospital RWTH-AachenAachenGermany
  3. 3.Institute of Laboratory Animal SciencesUniversity Hospital RWTH-AachenAachenGermany
  4. 4.Medical Faculty, Institute of AnatomyLithuanian University of Health Sciences KaunasKaunasLithuania

Personalised recommendations