Recent Updates on Epigenetic Biomarkers for Prostate Cancer

Chapter

Abstract

Epigenetics refers to DNA methylation, histone modifications and microRNAs and these epigenetic modifications are extensively investigated as potential biomarkers for cancer. Characterizing genome wide epigenetic changes involved in prostate cancer development and progression will not only identify potential novel therapeutic targets, since some epigenetic modifications are reversible, but also highlight which epigenetic changes can be used as prostate cancer biomarkers. Epigenetic changes are relatively stable and easy to measure in peripheral samples like blood and urine, further highlighting their importance as powerful tools for assessing patient diagnosis and prognosis. In this review, we outline how epigenetic biomarkers have been used for diagnosis, prognosis and for monitoring therapeutic response in prostate cancer. We also review how epigenetic biomarkers may be more sensitive and specific than current prostate cancer serum markers and the possibility that combining different epigenetic modifications may further enhance the diagnostic and prognostic ability of these epigenetic biomarkers. As epigenome wide studies continue to be performed in larger patient cohorts, we will soon identify the epigenetic modifications involved in prostate tumorigenesis with the resultant identification of new therapeutic targets and robust prostate cancer biomarkers.

Keywords

DNA methylation Histone modifications MicroRNA Diagnostic biomarkers Prostate cancer 

Notes

Acknowledgements

 This work was supported by grants from the National Health and Medical Research Council (627185; TBM), Cancer Council of South Australia/SAHMRI Beat Cancer Project (APP1030945; TBM), the U.S. Department of Defense Prostate Cancer Training Fellowship (TKD; PC080400), W. Bruce Hall Cancer Council of SA Research Fellowship (TBM), and The Prostate Cancer Foundation of Australia (TKD; YIG03).

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90PubMedGoogle Scholar
  2. 2.
    Sakr WA, Grignon DJ, Haas GP, Heilbrun LK, Pontes JE, Crissman JD (1996) Age and racial distribution of prostatic intraepithelial neoplasia. Eur Urol 30:138–144PubMedGoogle Scholar
  3. 3.
    Scher HI, Buchanan G, Gerald W, Butler LM, Tilley WD (2004) Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer 11:459–476PubMedGoogle Scholar
  4. 4.
    Asmane I, Ceraline J, Duclos B, Rob L, Litique V, Barthelemy P et al (2011) New strategies for medical management of castration-resistant prostate cancer. Oncology 80:1–11PubMedGoogle Scholar
  5. 5.
    Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V et al (2009) Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360:1320–1328PubMedGoogle Scholar
  6. 6.
    Andriole GL, Crawford ED, Grubb RL 3rd, Buys SS, Chia D, Church TR et al (2009) Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360:1310–1319PubMedGoogle Scholar
  7. 7.
    Neal DE, Donovan JL (2000) Prostate cancer: to screen or not to screen? Lancet Oncol 1:17–24PubMedGoogle Scholar
  8. 8.
    Henrique R, Jeronimo C (2004) Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol 46:660–669; discussion 669PubMedGoogle Scholar
  9. 9.
    Roehrborn CG, Boyle P, Gould AL, Waldstreicher J (1999) Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology 53:581–589PubMedGoogle Scholar
  10. 10.
    Schatteman PH, Hoekx L, Wyndaele JJ, Jeuris W, Van Marck E (2000) Inflammation in prostate biopsies of men without prostatic malignancy or clinical prostatitis: correlation with total serum PSA and PSA density. Eur Urol 37:404–412PubMedGoogle Scholar
  11. 11.
    Djulbegovic M, Beyth RJ, Neuberger MM, Stoffs TL, Vieweg J, Djulbegovic B et al (2010) Screening for prostate cancer: systematic review and meta-analysis of randomised controlled trials. BMJ 341:c4543PubMedGoogle Scholar
  12. 12.
    Shariat SF, Semjonow A, Lilja H, Savage C, Vickers AJ, Bjartell A (2011) Tumor markers in prostate cancer I: blood-based markers. Acta Oncol 50(Suppl 1):61–75PubMedGoogle Scholar
  13. 13.
    Bjartell A, Montironi R, Berney DM, Egevad L (2011) Tumour markers in prostate cancer II: diagnostic and prognostic cellular biomarkers. Acta Oncol 50(Suppl 1):76–84PubMedGoogle Scholar
  14. 14.
    Roobol MJ, Haese A, Bjartell A (2011) Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol 50(Suppl 1):85–89PubMedGoogle Scholar
  15. 15.
    Crawford ED, Rove KO, Trabulsi EJ, Qian J, Drewnowska KP, Kaminetsky JC et al (2012) Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J Urol 188:1726–1731PubMedGoogle Scholar
  16. 16.
    Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA et al (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56:275–286PubMedGoogle Scholar
  17. 17.
    Lin DW, Newcomb LF, Brown EC, Brooks JD, Carroll P, Ziding Feng, Gleave ME, Lance R, Sanda MG, Thompson IM, Wei J, Nelson P (2012) Urinary TMPRSS2: use of ERG and PCA3 to predict tumor volume and Gleason grade in an active surveillance cohort–results from the Canary/EDRN Prostate Active Surveillance Study. J Clin Oncol 30(suppl 5; abstr 2)Google Scholar
  18. 18.
    Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S et al (2011) Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 3:94ra72PubMedGoogle Scholar
  19. 19.
    Dobosy JR, Roberts JL, Fu VX, Jarrard DF (2007) The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol 177:822–831PubMedGoogle Scholar
  20. 20.
    Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ et al (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60:753–766PubMedGoogle Scholar
  21. 21.
    Li LC, Carroll PR, Dahiya R (2005) Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 97:103–115PubMedGoogle Scholar
  22. 22.
    Schulz WA, Hatina J (2006) Epigenetics of prostate cancer: beyond DNA methylation. J Cell Mol Med 10:100–125PubMedGoogle Scholar
  23. 23.
    Chan TA, Glockner S, Yi JM, Chen W, Van Neste L, Cope L et al (2008) Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med 5:e114PubMedGoogle Scholar
  24. 24.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11:726–734PubMedGoogle Scholar
  25. 25.
    Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769PubMedGoogle Scholar
  26. 26.
    Szyf M, Pakneshan P, Rabbani SA (2004) DNA demethylation and cancer: therapeutic implications. Cancer Lett 211:133–143PubMedGoogle Scholar
  27. 27.
    Yegnasubramanian S, Haffner MC, Zhang Y, Gurel B, Cornish TC, Wu Z et al (2008) DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 68:8954–8967PubMedGoogle Scholar
  28. 28.
    Brothman AR, Swanson G, Maxwell TM, Cui J, Murphy KJ, Herrick J et al (2005) Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome? Cancer Genet Cytogenet 156:31–36PubMedGoogle Scholar
  29. 29.
    Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174PubMedGoogle Scholar
  30. 30.
    Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R et al (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65PubMedGoogle Scholar
  31. 31.
    Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM et al (2007) Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 211:269–277PubMedGoogle Scholar
  32. 32.
    Yang B, Sun H, Lin W, Hou W, Li H, Zhang L et al (2011) Evaluation of global DNA hypomethylation in human prostate cancer and prostatic intraepithelial neoplasm tissues by immunohistochemistry. Urol Oncol. 2011 Jun 23. [Epub ahead of print]Google Scholar
  33. 33.
    Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174PubMedGoogle Scholar
  34. 34.
    Miyamoto K, Ushijima T (2005) Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol 35:293–301PubMedGoogle Scholar
  35. 35.
    Perry AS, Foley R, Woodson K, Lawler M (2006) The emerging roles of DNA methylation in the clinical management of prostate cancer. Endocr Relat Cancer 13:357–377PubMedGoogle Scholar
  36. 36.
    Park JY (2010) Promoter hypermethylation in prostate cancer. Cancer Control 17:245–255PubMedGoogle Scholar
  37. 37.
    Phe V, Cussenot O, Roupret M (2010) Methylated genes as potential biomarkers in prostate cancer. BJU Int 105:1364–1370PubMedGoogle Scholar
  38. 38.
    Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM (2011) Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br J Cancer 105:65–73PubMedGoogle Scholar
  39. 39.
    Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG et al (2003) Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163:923–933PubMedGoogle Scholar
  40. 40.
    Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS et al (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91:11733–11737PubMedGoogle Scholar
  41. 41.
    Jeronimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G et al (2004) A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10:8472–8478PubMedGoogle Scholar
  42. 42.
    Li LC, Okino ST, Dahiya R (2004) DNA methylation in prostate cancer. Biochim Biophys Acta 1704:87–102PubMedGoogle Scholar
  43. 43.
    Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Li LC et al (2005) Multigene methylation analysis for detection and staging of prostate cancer. Clin Cancer Res 11:6582–6588PubMedGoogle Scholar
  44. 44.
    Meiers I, Shanks JH, Bostwick DG (2007) Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology 39:299–304PubMedGoogle Scholar
  45. 45.
    Febbo PG (2009) Epigenetic events highlight the challenge of validating prognostic biomarkers during the clinical and biologic evolution of prostate cancer. J Clin Oncol 27:3088–3090PubMedGoogle Scholar
  46. 46.
    Hopkins TG, Burns PA, Routledge MN (2007) DNA methylation of GSTP1 as biomarker in diagnosis of prostate cancer. Urology 69:11–16PubMedGoogle Scholar
  47. 47.
    Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG (2004) GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 91:540–552PubMedGoogle Scholar
  48. 48.
    Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Muller SC et al (2005) Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11:4097–4106PubMedGoogle Scholar
  49. 49.
    Roupret M, Hupertan V, Yates DR, Catto JW, Rehman I, Meuth M et al (2007) Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin Cancer Res 13:1720–1725PubMedGoogle Scholar
  50. 50.
    Baden J, Green G, Painter J, Curtin K, Markiewicz J, Jones J et al (2009) Multicenter evaluation of an investigational prostate cancer methylation assay. J Urol 182:1186–1193PubMedGoogle Scholar
  51. 51.
    Baden J, Adams S, Astacio T, Jones J, Markiewicz J, Painter J et al (2011) Predicting prostate biopsy result in men with prostate specific antigen 2.0 to 10.0 ng/ml using an investigational prostate cancer methylation assay. J Urol 186:2101–2106PubMedGoogle Scholar
  52. 52.
    Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B et al (2005) Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 11:4037–4043PubMedGoogle Scholar
  53. 53.
    Roupret M, Hupertan V, Catto JW, Yates DR, Rehman I, Proctor LM et al (2008) Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer 122:952–956PubMedGoogle Scholar
  54. 54.
    Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Muller SC, von Rucker A (2007) Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur Urol 51:665–674; discussion 674PubMedGoogle Scholar
  55. 55.
    Woodson K, O’Reilly KJ, Ward DE, Walter J, Hanson J, Walk EL et al (2006) CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease. Epigenetics 1:183–186PubMedGoogle Scholar
  56. 56.
    Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI et al (2005) Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res 11:8321–8325PubMedGoogle Scholar
  57. 57.
    Chiam K, Centenera MM, Butler LM, Tilley WD, Bianco-Miotto T (2011) GSTP1 DNA methylation and expression status is indicative of 5-aza-2′-deoxycytidine efficacy in human prostate cancer cells. PLoS One 6:e25634PubMedGoogle Scholar
  58. 58.
    Horvath LG, Mahon KL, Qu W, Devaney J, Chatfield MD, Paul C et al (2011) A study of methylated glutathione s-transferase 1 (mGSTP1) as a potential plasma epigenetic marker of response to chemotherapy and prognosis in men with castration-resistant prostate cancer (CRPC). J Clin Oncol 29(suppl):abstr 4603Google Scholar
  59. 59.
    Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400PubMedGoogle Scholar
  60. 60.
    Wei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay NV et al (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47:701–706PubMedGoogle Scholar
  61. 61.
    Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266PubMedGoogle Scholar
  62. 62.
    Barlesi F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW, Lefesvre P et al (2007) Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol 25:4358–4364PubMedGoogle Scholar
  63. 63.
    Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B et al (2008) Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14:7237–7245Google Scholar
  64. 64.
    Zhou LX, Li T, Huang YR, Sha JJ, Sun P, Li D (2010) Application of histone modification in the risk prediction of the biochemical recurrence after radical prostatectomy. Asian J Androl 12:171–179PubMedGoogle Scholar
  65. 65.
    Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15:1968–1976PubMedGoogle Scholar
  66. 66.
    Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gutgemann I et al (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70:61–69PubMedGoogle Scholar
  67. 67.
    Bianco-Miotto T, Chiam K, Buchanan G, Jindal S, Day TK, Thomas M et al (2010) Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev 19:2611–2622PubMedGoogle Scholar
  68. 68.
    Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S et al (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174:1619–1628PubMedGoogle Scholar
  69. 69.
    Manuyakorn A, Paulus R, Farrell J, Dawson NA, Tze S, Cheung-Lau G et al (2010) Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J Clin Oncol 28:1358–1365PubMedGoogle Scholar
  70. 70.
    Cai MY, Tong ZT, Zhu W, Wen ZZ, Rao HL, Kong LL et al (2011) H3K27me3 protein is a promising predictive biomarker of patients’ survival and chemoradioresistance in human nasopharyngeal carcinoma. Mol Med 17:1137–1145PubMedGoogle Scholar
  71. 71.
    Rogenhofer S, Kahl P, Mertens C, Hauser S, Hartmann W, Buttner R et al (2012) Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int 109:459–465PubMedGoogle Scholar
  72. 72.
    Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA (2003) Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst 95:661–668PubMedGoogle Scholar
  73. 73.
    Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA (2007) Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther 6:1403–1412PubMedGoogle Scholar
  74. 74.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629PubMedGoogle Scholar
  75. 75.
    van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA et al (2007) Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 52:455–463PubMedGoogle Scholar
  76. 76.
    Laitinen S, Martikainen PM, Tolonen T, Isola J, Tammela TL, Visakorpi T (2008) EZH2, Ki-67 and MCM7 are prognostic markers in prostatectomy treated patients. Int J Cancer 122:595–602PubMedGoogle Scholar
  77. 77.
    Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, Mehra R et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663PubMedGoogle Scholar
  78. 78.
    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24:268–273PubMedGoogle Scholar
  79. 79.
    Deligezer U, Akisik EE, Erten N, Dalay N (2008) Sequence-specific histone methylation is detectable on circulating nucleosomes in plasma. Clin Chem 54:1125–1131PubMedGoogle Scholar
  80. 80.
    Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437PubMedGoogle Scholar
  81. 81.
    Deligezer U, Yaman F, Darendeliler E, Dizdar Y, Holdenrieder S, Kovancilar M et al (2010) Post-treatment circulating plasma BMP6 mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized disease. Clin Chim Acta 411:1452–1456PubMedGoogle Scholar
  82. 82.
    Arita A, Niu J, Qu Q, Zhao N, Ruan Y, Nadas A et al (2012) Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ Health Perspect 120:198–203PubMedGoogle Scholar
  83. 83.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedGoogle Scholar
  84. 84.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518PubMedGoogle Scholar
  85. 85.
    Pang Y, Young CY, Yuan H (2010) MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai) 42:363–369Google Scholar
  86. 86.
    Coppola V, De Maria R, Bonci D (2010) MicroRNAs and prostate cancer. Endocr Relat Cancer 17:F1–F17PubMedGoogle Scholar
  87. 87.
    Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S et al (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59:671–681PubMedGoogle Scholar
  88. 88.
    Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176PubMedGoogle Scholar
  89. 89.
    Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J et al (2012) Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31:978–991PubMedGoogle Scholar
  90. 90.
    Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T et al (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616PubMedGoogle Scholar
  91. 91.
    Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T et al (2012) MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 130:611–621PubMedGoogle Scholar
  92. 92.
    Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al (2008) Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170PubMedGoogle Scholar
  93. 93.
    Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135PubMedGoogle Scholar
  94. 94.
    Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S et al (2009) MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16:206–216PubMedGoogle Scholar
  95. 95.
    Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D et al (2010) miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 127:2768–2776PubMedGoogle Scholar
  96. 96.
    Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K et al (2010) MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol 28:4–13PubMedGoogle Scholar
  97. 97.
    Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ et al (2012) Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer 131(3):652–661PubMedGoogle Scholar
  98. 98.
    Chung W, Kwabi-Addo B, Ittmann M, Jelinek J, Shen L, Yu Y et al (2008) Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS One 3:e2079PubMedGoogle Scholar
  99. 99.
    Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS et al (2010) Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12:235–246PubMedGoogle Scholar
  100. 100.
    Friedlander TW, Roy R, Tomlins SA, Ngo VT, Kobayashi Y, Azameera A et al (2012) Common structural and epigenetic changes in the genome of castration-resistant prostate cancer. Cancer Res 72:616–625PubMedGoogle Scholar
  101. 101.
    Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-Sundaram S et al (2011) Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res 21:1028–1041PubMedGoogle Scholar
  102. 102.
    Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T et al (2011) Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett 302:47–53PubMedGoogle Scholar
  103. 103.
    Kim YJ, Yoon HY, Kim SK, Kim YW, Kim EJ, Kim IY et al (2011) EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling. Clin Cancer Res 17:4523–4530PubMedGoogle Scholar
  104. 104.
    Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM et al (2011) DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res 21:1017–1027PubMedGoogle Scholar
  105. 105.
    Kron K, Pethe V, Briollais L, Sadikovic B, Ozcelik H, Sunderji A et al (2009) Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One 4:e4830PubMedGoogle Scholar
  106. 106.
    Mahapatra S, Klee EW, Young CY, Sun Z, Jimenez RE, Klee GG et al (2012) Global methylation profiling for risk prediction of prostate cancer. Clin Cancer Res 18:2882–2895PubMedGoogle Scholar
  107. 107.
    Goering W, Kloth M, Schulz WA (2012) DNA methylation changes in prostate cancer. Methods Mol Biol 863:47–66PubMedGoogle Scholar
  108. 108.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedGoogle Scholar
  109. 109.
    Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG et al (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637PubMedGoogle Scholar
  110. 110.
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303PubMedGoogle Scholar
  111. 111.
    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186PubMedGoogle Scholar
  112. 112.
    Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG et al (2011) Increased methylation variation in epigenetic domains across cancer types. Nat Genet 43:768–775PubMedGoogle Scholar
  113. 113.
    Statham AL, Robinson MD, Song JZ, Coolen MW, Stirzaker C, Clark SJ (2012) Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res 22:1120–1127PubMedGoogle Scholar
  114. 114.
    Sak A, Stuschke M (2010) Use of gammaH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin Radiat Oncol 20:223–231PubMedGoogle Scholar
  115. 115.
    Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA et al (2008) Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol 4:188PubMedGoogle Scholar
  116. 116.
    Dryhurst D, McMullen B, Fazli L, Rennie PS, Ausio J (2012) Histone H2A.Z prepares the prostate specific antigen (PSA) gene for androgen receptor-mediated transcription and is upregulated in a model of prostate cancer progression. Cancer Lett 315:38–47PubMedGoogle Scholar
  117. 117.
    Crea F, Hurt EM, Mathews LA, Cabarcas SM, Sun L, Marquez VE et al (2011) Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10:40PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Karen Chiam
    • 1
  • Tanya Kate Day
    • 2
  • Tina Bianco-Miotto
    • 3
  1. 1.Cancer Research ProgramGarvan Institute of Medical Research and The Kinghorn Cancer CenterSydneyAustralia
  2. 2.Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research Centre, Discipline of MedicineThe University of Adelaide and Hanson InstituteAdelaideAustralia
  3. 3.The Robinson Institute, Research Centre for Reproductive Health & Early Origins of Health and Disease, School of Paediatrics and Reproductive HealthThe University of AdelaideAdelaideAustralia

Personalised recommendations