Skip to main content

Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems

  • Chapter
  • First Online:
Book cover Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Biogenic volatile organic compounds (BVOCs) play a central role in atmospheric chemistry via their high reactivity in the gas phase and via their participation in atmospheric new particle formation and secondary organic aerosol formation. The emissions of BVOC to the atmosphere depend on several climate-related variables, making these compounds part of complex, yet potentially very important, climate feedback mechanisms. Here we illustrated the role of BVOCs in enhancing gross primary production (GPP) and cloud droplet number concentrations. The first of these phenomena forms a positive feedback loop for the terrestrial carbon sink (GPP feedback), whereas the second one forms a negative feedback loop for the ambient temperature increase (temperature feedback).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalto P, Hämeri K, Becker E, Weber R, Salm J, Mäkelä JM, Hoell C, O’Dowd CD, Karlsson H, Hansson HC, Väkevä M, Koponen IK, Buzorius G, Kulmala M (2001) Physical characterization of aerosol particles during nucleation events. Tellus 53B:344–358

    Google Scholar 

  • Arneth A, Miller PA, Scholze M, Hickler T, Schurgers G, Smith B, Prentice IC (2007) CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett 34:L18813. doi:10.1029/2007GL030615

    Article  Google Scholar 

  • Arneth A, Unger N, Kulmala M, Andreae MO (2009) Clean the air, heat the planet. Science 326:672–673

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Shurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532

    Article  CAS  Google Scholar 

  • Arneth A, Schurgers G, Lathière J, Duhl T, Beerling DJ, Hewitt CN, Martin M, Guenther A (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmos Chem Phys 11:8037–8052

    Article  CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci 95(8):4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys 10:1701–1737

    Article  CAS  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999) Monoterpene emission from coniferous trees in response to elevated CO2 and climate warming. Glob Change Biol 5:255–267

    Google Scholar 

  • Copolovici LO, Niinemets Ü (2005) Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere 61:1390–1400

    Article  PubMed  CAS  Google Scholar 

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud J-P, Textor C, Schulz M, van der Werf GR, Wilson J (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344

    Article  CAS  Google Scholar 

  • Dindorf T, Kuhn U, Ganzeveld L, Schebeske G, Ciccioli P, Holzke C, Köble R, Seufert G, Kesselmeier J (2006) Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. J Geophys Res Atmos 111:D16305

    Article  Google Scholar 

  • Donahue NM, Epstein SA, Pandis SN, Robinson AL (2011) A two-dimensional volatility basis set. 1. Organic-aerosol mixing thermodynamics. Atmos Chem Phys 11:3303–3318

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Fischbach RJ, Staudt M, Zimmer I, Rambal S, Schnitzler J-P (2002) Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex. Physiol Plant 114:354–360

    Article  PubMed  CAS  Google Scholar 

  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer. A review. Bull Am Meterol Soc 81:1537–1575

    Article  Google Scholar 

  • Ghirardo A, Koch K, Taipale R, Zimmer I, Schnitzler J-P, Rinne J (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant Cell Environ 33:781–792

    PubMed  CAS  Google Scholar 

  • Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820

    Article  PubMed  CAS  Google Scholar 

  • Grote R, Niinemets Ü (2008) Modeling volatile isoprenoid emissions – a story with split ends. Plant Biol 10:8–28. doi:10.1055/s-2007-964975

    Article  PubMed  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A (2013) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman PA (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100:8873–8892

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  Google Scholar 

  • Hari P, Kulmala M (2005) Station for measuring ecosystem–atmosphere relations (SMEAR II). Boreal Env Res 10:315–322

    CAS  Google Scholar 

  • Hari P, Mäkelä A (2003) Annual pattern of photosynthesis in Scots pine in the boreal zone. Tree Physiol 23:145–155

    Article  PubMed  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang G, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Change Biol 15:1127–1140. doi:10.1111/j.1365-2486.2008.01802.x

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change (Core Writing Team, Pachauri RK, Reisinger A (eds)) IPCC, Geneva, Switzerland

    Google Scholar 

  • Kazil J, Stier P, Zhang K, Quaas J, Kinne S, O’Donnell D, Rast S, Esch M, Ferrachat S, Lohmann U, Feichter J (2010) Aerosol nucleation and its role for clouds and Earth’s radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 10:10733–10752

    Article  CAS  Google Scholar 

  • Kerminen V-M, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis SN, Kulmala M, Petäjä T (2012) Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmos Chem Phys 12:12037–12059

    Article  CAS  Google Scholar 

  • Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik Ü, Aalto P, Keronen P, Hakola H, Bäck JB, Hoffmann T, Vesala T, Hari P (2004) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys 4:557–562

    Article  CAS  Google Scholar 

  • Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plass-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898

    Article  CAS  Google Scholar 

  • Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PP, Junninen H, Paasonen P, Riipinen I, Lehtinen KEJ, Laaksonen A, Kerminen V-M (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7:1651–1667. doi:10.1038/nprot.2012.091

    Article  PubMed  CAS  Google Scholar 

  • Lamarque J-F, Kyle G, Meinshausen M, Riahi K, Smith S, van Vuuren D, Conley A, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Climate Change 109:191–212

    Article  CAS  Google Scholar 

  • Lerdau M, Throop HL (2000) Isoprene emission and photosynthesis in a tropical forest canopy: implications for model development. Ecol Appl 9:1109–1117

    Article  Google Scholar 

  • Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Lihavainen H, Kerminen V-M, Tunved P, Aaltonen V, Arola A, Hatakka J, Hyvärinen A, Viisanen Y (2009) Observational signature of the direct radiative effect by natural boreal forest aerosols and its relation to the corresponding first indirect effect. J Geophys Res 114:D20206. doi:10.1029/2009JD012078

    Article  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Sharkey TD (1996) Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc Natl Acad Sci USA 93:9966–9969

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler J-P, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2. Glob Change Biol 7:709–717

    Article  Google Scholar 

  • Lovelock J (1979) Gaia, a new look at life on Earth. Oxford University Press, Oxford, UK

    Google Scholar 

  • Mahowald N (2011) Aerosol indirect effect on biogeochemical cycles and climate. Science 334:794–796

    Article  PubMed  CAS  Google Scholar 

  • Makkonen R, Asmi A, Kerminen V-M, Boy M, Arneth A, Hari P, Kulmala M (2012a) Air pollution control and decreasing new particle formation lead to strong climate warming. Atmos Chem Phys 12:1515–1524

    Article  CAS  Google Scholar 

  • Makkonen R, Asmi A, Kerminen V-M, Boy M, Arneth A, Guenther A, Kulmala M (2012b) BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmos Chem Phys 12:10077–10096

    Article  Google Scholar 

  • Markkanen T, Rannik Ü, Keronen P, Suni T, Vesala T (2001) Eddy covariance fluxes over a boreal Scots pine forest. Boreal Env Res 6:65–78

    CAS  Google Scholar 

  • Mauldin RL III, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminen V-M, Kulmala M (2012) An new atmospherically relevant oxidant of sulphur dioxide. Nature 488:193–196. doi:10.1038/nature11278

    Article  PubMed  CAS  Google Scholar 

  • Medlyn BE, Duursma RA, Zeppel MJB (2011) Forest productivity under climate change: a checklist for evaluating model studies. Wiley Interdiscip Rev Clim Change 2:332–355. doi:10.1002/wcc.108

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global carbon sink. Nature 458:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Merikanto J, Spracklen DV, Mann GW, Pickering SJ, Carslaw KS (2009) Impact of nucleation on global CCN. Atmos Chem Phys 9:8601–8616

    Article  CAS  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    Article  CAS  Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832

    Article  CAS  Google Scholar 

  • Niinemets Ü, Ciccioli P, Noe SM, Reichstein M (2013) Scaling BVOC emissions from leaf to canopy and landscape: how different are predictions based on contrasting emission algorithms? In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell D, Tsigaridis K, Feichter J (2011) Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos Chem Phys 11:8635–8659

    Article  Google Scholar 

  • Pegoraro E, Rey A, Barron-Gafford G, Monson R, Malh Y, Murthy R (2005) The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapor pressure deficit on ecosystem isoprene fluxes. Oecologia 146:120–129

    Article  PubMed  Google Scholar 

  • Pierce JR, Adams PJ (2009) Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos Chem Phys 9:1339–1356

    Article  CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Change Biol 17:1595–1610

    Article  Google Scholar 

  • Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56. doi:10.1038/nature10580

    Article  PubMed  CAS  Google Scholar 

  • Raes F, Liao H, Chen W-T, Seinfeld JH (2010) Atmospheric chemistry-climate feedbacks. J Geophys Res 115:D12121. doi:10.1029/2009JD013300

    Article  Google Scholar 

  • Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Räisänen T, Ryyppö A, Kellomäki S (2008) Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmos Environ 42:4160–4171

    Article  Google Scholar 

  • Riipinen I, Pierce JR, Yli-Juuti T, Nieminen T, Häkkinen S, Ehn M, Junninen H, Lehtipalo K, Petäjä T, Slowik J, Chang R, Shantz NC, Abbatt J, Leaitch WR, Kerminen V-M, Worsnop DR, Pandis SN, Donahue NM, Kulmala M (2011) Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos Chem Phys 11:3865–3878

    Article  CAS  Google Scholar 

  • Shao M, Czapiewski KV, Heiden AC, Kobel K, Komenda M, Koppmann R, Wildt J (2001) Volatile organic compound emissions from Scots pine: mechanisms and description by algorithms. J Geophys Res 106:20483–20491

    Article  CAS  Google Scholar 

  • Sharkey T, Loreto F (1993) Water-stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M, Klimont Z, Anenberg SC, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Höglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh NTK, Milly G, Williams M, Demkine V, Fowler D (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–188

    Article  PubMed  CAS  Google Scholar 

  • Sogacheva L, Saukkonen L, Nilsson ED, Dal Maso M, Schultz D, de Leeuw G, Kulmala M (2008) New aerosol particle formation in different synoptic situations at Hyytiälä, southern Finland. Tellus 60B:485–494

    CAS  Google Scholar 

  • Spracklen DV, Carslaw KS, Kulmala M, Kerminen V-M, Sihto S-L, Riipinen I, Merikanto J, Mann GW, Chipperfield MP, Wiedensohler A, Birmili W, Lihavainen H (2008) Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys Res Lett 35:L06808. doi:10.1029/2007GL033038

    Article  Google Scholar 

  • Spracklen DV, Carslaw KS, Merikanto J, Mann GW, Reddington CL, Pickering S, Ogren JA, Andrews E, Baltensperger U, Weingartner E, Boy M, Kulmala M, Laakso L, Lihavainen H, Kivekäs N, Komppula M, Mihalopoulos N, Kouvarakis G, Jennings SG, O’Dowd C, Birmili W, Wiedensohler A, Weller R, Gras J, Laj P, Sellegri K, Bonn B, Krejci R, Laaksonen A, Hamed A, Minikin A, Harrison RM, Talbot R, Sun J (2010) Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos Chem Phys 10:4775–4793

    Article  CAS  Google Scholar 

  • Spracklen DV, Jimenez JL, Carslaw KS, Worsnop DR, Evans MJ, Mann GW, Zhang Q, Canagaratna MR, Allan J, Coe H, McFiggans G, Rap A, Forster P (2011) Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys 11:12109–12136

    Article  CAS  Google Scholar 

  • Staudt M, Seufert G (1995) Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften 82:89–92

    Article  CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21(7):437–445

    Article  PubMed  CAS  Google Scholar 

  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schulz M, Boucher O, Minikin A, Petzold A (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156

    Article  CAS  Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Change Biol 18:3423–3440. doi:10.1111/j.1365-2486.2012.02789.x

    Article  Google Scholar 

  • Suni T, Rinne J, Reissel A, Altimir N, Keronen P, Rannik Ü, Dal Maso M, Kulmala M, Vesala T (2003) Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996–2001. Boreal Env Res 8:287–301

    CAS  Google Scholar 

  • Tunved P, Hansson H-C, Kerminen V-M, Ström J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312:261–263

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Penner JE (2009) Aerosol indirect forcing in a global model with particle nucleation. Atmos Chem Phys 9:239–260

    Article  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200. doi:10.1111/j.1365-2486.2008.01803.x

    Article  Google Scholar 

  • Yu F, Luo G (2009) Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations. Atmos Chem Phys 9:7691–7710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Kulmala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kulmala, M., Nieminen, T., Chellapermal, R., Makkonen, R., Bäck, J., Kerminen, VM. (2013). Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_17

Download citation

Publish with us

Policies and ethics