In Vitro Conservation Protocols for Some Commercially Important Medicinal Plants

  • Anwar ShahzadEmail author
  • Shahina Parveen


Interest and support for the conservation and development of medicinal plants is increasing in all parts of the world. This is due, in part, to a growing recognition given to the role of medicinal plants in the provision of culturally relevant and affordable health care in creating sustainable livelihoods and in the vital conservation of biodiversity. This has also drawn the attention of the world community towards the need for creating mechanisms to ensure sustained development of the sector and to allow sharing of information between countries, organizations and agencies. The value of medicinal plants to human livelihoods is essentially infinite. The special significance of medicinal plants in conservation stems from the major cultural, livelihood or economic roles that they play in many people’s lives. Many of the threats to medicinal plant species are similar to those causing endangerment to plant diversity generally. The most serious proximate threats generally are habitat loss, habitat degradation and over-harvesting. In order to protect such endangered species from possible extinction, the exploitation of medicinal plants must be accompanied by conservation measures. Application of tissue culture of plant cells, tissues and organs is the most promising tool for medicinal plant conservation.


Medicinal Plant Somatic Embryo Somatic Embryogenesis Multiple Shoot Nodal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







2-isopentanyl adenine




Gibberrelic acid


2,4-dichlorophenoxyacetic acid


2,4,5-trichlorophenoxyacetic acid


α-naphthalene acetic acid


Indole-3-acetic acid


Indole-3-butyric acid




Adenine Sulphate


Coconut Water


Casein Hydrolysate


Plant Growth Regulator


Murashige and Skoog’s medium


  1. Agrawal, V., & Sardar, P. R. (2003). In vitro organogenesis and histomorphological investigations in senna (Cassia angustifolia) – A medicinally valuable shrub. Physiology and Molecular Biology of Plants, 9, 131–140.Google Scholar
  2. Agrawal, V., & Sardar, P. R. (2006). In vitro propagation of Cassia angustifolia through leaflet and cotyledon derived calli. Biologia Plantarum, 50, 118–122.Google Scholar
  3. Agrawal, V., & Sardar, P. R. (2007). In vitro regeneration through somatic embryogenesis and organogenesis using cotyledons of Cassia angustifolia Vahl. In Vitro Cellular and Developmental Biology – Plant, 43, 585–592.Google Scholar
  4. Ahmad, Z., Zaidi, N., & Shah, F. (1990). Micropropagation of Melia azedarach from mature tissue. Pakistan Journal of Botany, 22(2), 172–178.Google Scholar
  5. Ahmed, M. B., Salahin, M., Karim, R., Razvy, M. A., Hannan, M. M., Sultana, R., Hossain, M., & Islam, R. (2007). An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. American-Eurasian Journal of Scientific Research, 2(2), 121–125.Google Scholar
  6. Ajithkumar, D., & Seeni, S. (1998). Rapid clonal multiplication through in vitro axillary shoot proliferation of Aegle marmelos (L) Corr., a medicinal tree. Plant Cell Reports, 17(5), 422–426.Google Scholar
  7. Alizadeh, S., Mantell, S. H., & Viana, A. M. (1998). In vitro shoot culture and microtuber induction in the steroid yam Dioscorea composita Hemsl. Plant Cell, Tissue and Organ Culture, 53, 107–112.Google Scholar
  8. Al-Qura’n, S. (2005). Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon, 46, 119–126.Google Scholar
  9. Anonymous. (1966). Wealth of India: A dictionary of Indian raw materials and industrial products (Vol. VII, pp 79–89). New Delhi: CSIR Publication.Google Scholar
  10. Anonymous. (1988). The wealth of India: A dictionary of Indian raw materials and industrial products (Vol. II). New Delhi: Publication and Information Directorate, CSIR.Google Scholar
  11. Arora, R., & Bhojwani, S. S. (1989). In vitro propagation and low temperature storage of Saussurea lappa C.B. Clarke – An endangered, medicinal plant. Plant Cell Reports, 8, 44–47.Google Scholar
  12. Arora, K., Sharma, M., Srivastava, J., Ranade, S. A., & Sharma, A. K. (2010). Rapid in vitro cloning of a 40-year-old tree of Azadirachta indica A. Juss. (Neem) employing nodal stem segments. Agroforestry Systems, 78, 53–63.Google Scholar
  13. Bajaj, Y. P. S., Furmanowa, M., & Olszowska, O. (1988). Biotechnology of the micropropagation of medicinal and aromatic plants. In Y. P. S. Bajaj (Ed.), Medicinal and aromatic plants I (Biotechnology in agriculture & forestry, Vol. 4, p. 60). Berlin: Springer.Google Scholar
  14. Barik, D. P., Naik, S. K., Mudgal, A., & Chand, P. K. (2007). Rapid plant regeneration through in vitro axillary shoot proliferation of butterfly pea (Clitoria ternatea L.) – A twinning legume. In Vitro Cellular and Developmental Biology – Plant, 43, 144–148.Google Scholar
  15. Barve, D. M., & Mehta, A. R. (1993). Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell Tissue and Organ Culture, 35(3), 237–244.Google Scholar
  16. Camper, N. D., Coker, P. S., Wedge, D. E., & Keese, R. J. (1997). In vitro culture of Ginkgo. In Vitro Cellular and Developmental Biology – Plant, 33(2), 125–127.Google Scholar
  17. Carpinela, M., Herrero, G., Alonso, R., & Palacios, S. (1999). Actividad antifungica de extractos del fruto del paraiso (Melia azederach L.). Fitoterapia, 70, 296–298.Google Scholar
  18. Chaturvedi, R., Razdan, M. K., & Bhojwani, S. S. (2004). In vitro clonal propagation of an adult tree of neem (Azadirachta indica A. Juss.) by forced axillary branching. Plant Science, 166, 501–506.Google Scholar
  19. Dalal, N. V., & Rai, V. R. (2004). In vitro propagation of Oroxylum indicum Vent. A medicinally important forest tree. Journal of Forest Research, 9(1), 61–65.Google Scholar
  20. Daniel, A., Kalidass, C., & Mohan, V. R. (2010). In vitro multiple shoot induction through axillary bud of Ocimum basilicum L. An important medicinal plant. International Journal of Biological Technology, 1(1), 24–28.Google Scholar
  21. Debnath, M. (2008). Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. Journal of Medicinal Plants Research, 2(2), 45–51.Google Scholar
  22. del Mendez, M. C., Elı’as, F., Aragao, M., Gimeno, E. J., & Riet-Correa, F. (2002). Intoxication of cattle by the fruits of Melia azedarach. Veterinary and Human Toxicology, 44, 145–148.Google Scholar
  23. Dewan, A., Nanda, K., & Gupta, S. C. (1992). In vitro micropropagation of Acacia nilotica Subsp. Indica Brenen via cotyledonary nodes. Plant Cell Reports, 12, 18–21.Google Scholar
  24. Dhawan, S., Shasany, A. K., Naqvi, A. A., Kumar, S., & Khanuja, S. P. S. (2003). Menthol tolerant clones of Mentha arvensis: Approach for in vitro selection of menthol rich genotypes. Plant Cell Tissue & Organ Culture, 75, 87–94.Google Scholar
  25. Dode, L. B., Bobrowski, V. L., Braga, E. J. B., Seixas, F. K., & Schuch, M. W. (2003). In vitro propagation of Ocimum basilicum L. (Lamiaceae). Acta Scientiarum Biological Sciences, 25(2), 435–437.Google Scholar
  26. Gazzaneo, L. R., Paiva de Lucena, R. F., & Paulino de Albuquerque, U. (2005). Knowledge and use of medicinal plants by local specialists in a region of Atlantic forest in the state of Pernambuco (Northeastern Brazil). Journal of Ethnobiology and Ethnomedicine, 1, 9.Google Scholar
  27. Geetha, S. P., Raghu, A. V., Martin, G., George, S., & Balachandran, I. (2009). In vitro propagation of two tuberous medicinal plants: Holostemma ada-kodien and Ipomoea mauritiana. Methods in Molecular Biology, 547, 81–92.Google Scholar
  28. Giri, J., Suganthi, B., & Meera, G. (1987). Effect of tulsi (Ocimum sanctum) on diabetes mellitus. Indian Journal of Nutrition and Dietetics, 24, 337–341.Google Scholar
  29. Gopi, C., & Ponmurugan, P. (2006). Somatic embryogenesis and plant regeneration from leaf callus of Ocimum basilicum L. Journal of Biotechnology, 126, 260–264.Google Scholar
  30. Gulati, A., Bharel, S., Abdin, M. Z., Jain, S. K., & Srivastava, P. S. (1996). In vitro micropropagation and flowering in Artemisia annua. Journal of Plant Biochemistry and Biotechnology, 5, 31.Google Scholar
  31. Hanazaki, N., Tamashiro, J. Y., Leitao-Filho, H., & Gegossi, A. (2000). Diversity of plant uses in two Caicaras communities from the Atlantic forest coast, Brazil. Biodiversity and Conservation, 9, 597–615.Google Scholar
  32. Hill, A. F. (1952). Economic botany. Textbook of useful plants and plant products (2nd ed.). New York: McGraw-Hill Book Company Inc.Google Scholar
  33. Husain, M. K., & Anis, M. (2009). Rapid in vitro multiplication of Melia azedarach L. (a multipurpose woody tree). Acta Physiologae Plantarum, 31, 765–772.Google Scholar
  34. Ibrahim, I. A., Nasr, M. I., Mohammed, B. R., & El-Zefzafi, M. M. (2008). Plant growth regulators affecting in vitro cultivation of Stevia rebaudiana. Sugar Technology, 10(3), 254–259.Google Scholar
  35. Ishima, N., & Katayama, O. (1976). Sensory evaluation of stevioside as a sweetener. Report of National Food Research Institute, 31, 80–85.Google Scholar
  36. Isman, B. I., Koul, O., Luczynski, A., & Kaminski, J. (1990). Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of Agricultural and Food Chemistry, 38, 1406–1411.Google Scholar
  37. Jain, N. N., Ohal, C. C., Shroff, S. K., Bhutada, R. H., Somani, R. S., Kasture, V. S., & Kasture, S. B. (2003). Clitoria ternatea and the CNS. Pharmacology Biochemistry and Behaviour, 75, 529–536.Google Scholar
  38. Johnson, T. S., Narayan, S. B., & Narayan, D. B. A. (1997). Rapid in vitro propagation of Saussurea lappa, an endangered medicinal plant, through multiple shoot cultures. In Vitro Cellular and Developmental Biology – Plant, 33(2), 128–130.Google Scholar
  39. Katayma, O., Sumida, T., Hayashi, H., Mitsuhashi, H. (1976). The practical application of Stevia and R&D data (English translation) (p. 747) Osaka: ISU Company.Google Scholar
  40. Khosla, M. K. (1995). Sacred tulsi (Ocimum sanctum L.). Traditional Medicine and Pharmacology, 15, 53–61.Google Scholar
  41. Kim, Y. C., Ming, C. Q., Gunatilaka, A. A., & Kingston, D. G. (1996). Bioactive steroidal alkaloids from Solanum umbelliferum. Journal of Natural Products, 59(3), 283–285.Google Scholar
  42. Kim, M., Kim, S. K., Park, B. N., Lee, K. H., Min, G. H., Seoh, J. Y., Park, C. G., Hwang, E. S., Cha, C. Y., & Kook, Y. H. (1999). Antiviral effects of 28-deacetylsendanin on herpes simplex virus-1 replication. Phytochemistry, 43, 103–112.Google Scholar
  43. Kirticar, K. R., & Basu, B. D. (1989). In E. Blatter, J. F. Cains, & K. S. Bhaskar (Eds.), Indian medicinal plants. Allahabad: Lalit Mohan Basu Publishers.Google Scholar
  44. Komalavalli, N., & Rao, M. V. (2000). In vitro micropropagation of Gymnema sylvestre – A multipurpose medicinal plant. Plant Cell Tissue and Organ Culture, 61, 97–105.Google Scholar
  45. Kulkarni, A. A., Thangane, S. R., & Krishnamurthy, K. V. (2000). Direct shoot regeneration from node, internode, hypocotyls and embryo explants of Withania somnifera. Plant Cell Tissue and Organ Culture., 62(3), 203–209.Google Scholar
  46. Lee, S. M., Klocke, J. A., Barnby, M. A., Yamasaki, R. B., & Balandrin, M. F. (1991). Insecticidal constituents of Azadirachta indica and Melia azedarach (Meliaceae). In P. A. Hedin (Ed.), Naturally occurring pest bioregulators (ACS symposium series, Vol. 449, pp. 293–304). Washington, DC: American Chemical Society.Google Scholar
  47. Lincy, A. K., Remashree, A. B., & Bhaskaran, S. (2009). Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Botanica Croatica, 68(1), 93–103.Google Scholar
  48. Martin, G., Geetha, S. P., Sudhakaran, R. S., Raghu, A. V., Balachandran, I., & Ravindran, P. N. (2006). An efficient micropropagation system for Celastus paniculatus Willd. A vulnerable medicinal plant. Journal of Forest Research, 11(6), 461–465.Google Scholar
  49. Mathew, R., & Sankar, D. P. (2011). Comparision of somatic embryo formation in Ocimum basilicum L., Ocimum sanctum L., & Ocimum gratissimum L. International Journal of Pharma and Bio Sciences, 2(1), 356–367.Google Scholar
  50. Moerman, D. (1998). Native American ethnobotany (pp. 53–59). Portland: Timber Press.Google Scholar
  51. Mohapatra, H. P., & Rath, S. P. (2005). In vitro studies of Bacopa monnieri: An important medicinal plant with referenece toits biochemical variations. Indian Journal of Experimental Biology, 43(4), 373–376.Google Scholar
  52. Morris, J. B. (1999). Legume genetic resources with novel ‘value added’ industrial and pharmaceutical use. In J. Janick (Ed.), Perspectives on new crops and new uses (pp. 196–201). Alexandria: ASHS Press.Google Scholar
  53. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.Google Scholar
  54. Murthy, B. N. S., & Saxena, P. K. (1998). Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss.). Plant Cell Reports, 17, 469–475.Google Scholar
  55. Muthukumar, B., Arockiasamy, D. I., & Natarajan, E. (2004). Direct organogenesis in Datura metel L. from in vitro and in vivo nodal explants. Indian Journal of Biotechnology, 3(3), 449–451.Google Scholar
  56. Nangia, S., & Singh, R. (1996). Micropropagation of Acacia tortilis Hayne (Umbrella thorn) through cotyledonary nod culture. Indian Journal of Plant Physiology, 1, 77–79.Google Scholar
  57. Natesh, S. (1999). Conservation of medicinal and aromatic plants in India – An overview. In M. S. Kamaruddin, S. Natesh, A. Osman, & A. K. Azizol (Eds.), Medicinal and aromatic plants: Strategies and technologies for conservation (pp. 1–11). Kuala Lumpur: Forest Research Institute.Google Scholar
  58. Noman, A. S. M., Islam, M. S., Siddique, N. A., & Hossain, K. (2008). High frequency induction of multiple shoots from nodal explants of Vitex negundo L. using silver nitrate. International Journal of Agricultural Biology, 10, 633–637.Google Scholar
  59. Ovecka, M., Bobak, M., & Samaj, J. (2000). A comparative structural analysis of direct and indirect shoot regeneration of Papaver somniferum L. in vitro. Journal of Plant Physiology, 157, 281–289.Google Scholar
  60. Pandhure, N., Bansode, R., & Kothekar, V. (2010). In vitro multiplication of important medicinal plant Solanum nigrum L. Recent Research in Science and Technology, 2(7), 33–35.Google Scholar
  61. Parveen, S., & Shahzad, A. (2010). TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiology and Molecular Biology of Plants, 16(2), 201–206.Google Scholar
  62. Parveen, S., & Shahzad, A. (2011). A micropropagation protocol for Cassia angustifolia Vahl. from root explants. Acta Physiologae Plantarum, 33, 789–796.Google Scholar
  63. Parveen, S., Shahzad, A., & Saema, S. (2010). In vitro plant regeneration system for Cassia siamea Lam., a leguminous tree of economic importance. Agroforestry Systems, 80, 109–116.Google Scholar
  64. Pati, R., Chandra, R., Chauhan, U. K., Mishra, M., & Srivastava, N. (2008). In vitro clonal propagation of bael (Aegle marmelos Corr.) CV. CISHB1 through enhanced axillary branching. Physiology and Molecular Biology of Plants, 14(4), 337–346.Google Scholar
  65. Pattnaik, S., & Chand, P. K. (1996). In vitro propagation of the medicinal herbs Ocimum americanum L. syn. Ocimum canum Syms. (hoary basil) and Ocimum sanctum (holy basil). Plant Cell Reports, 15, 846–850.Google Scholar
  66. Pei, S. J. (2001). Ethnobotanical approaches of traditional medicine studies: Some experiences from Asia. Pharmaceutical Biology, 39, 74–79.Google Scholar
  67. Phippen, W. B., & Simon, J. E. (1998). Anthocyanins in basil. Journal of Agricultural and Food Chemistry, 46, 1734–1738.Google Scholar
  68. Prathanturarug, S., Soonthornchareonnon, N., Chuakul, W., Phaidee, Y., & Saralamp, P. (2005). Rapid micropropagation of Curcuma longa using bud explants pre-cultured in thiadizuron supplemented liquid medium. Plant Cell Tissue & Organ Culture, 80, 347–351.Google Scholar
  69. Principe, P. (1991). Monetising the pharmacological benefits of plants. Washington, DC: US Environmental Protection Agency.Google Scholar
  70. Raghu, A. V., Geetha, S. P., Martin, G., Balachandran, I., & Ravindran, P. N. (2006). In vitro clonal propagation through mature nodes of Tinospora cordifolia (Willd.) Hook. F. & Thoms.: An important ayurvedic medicinal plant. In Vitro Cellular & Developmental Biology – Plant, 42, 584–588.Google Scholar
  71. Robinson, B. L. (1930). Contributions from the Grey Herbarium of Harvard University. Cambridge: The Grey Herbarium of Harvard University.Google Scholar
  72. Rout, G. R. (2005). Micropropagation of Clitoria ternatea (Linn.) Fabaceae – An important medicinal plant. In Vitro Cellular and Developmental Biology – Plant, 41, 516–519.Google Scholar
  73. Sahoo, Y., Pattnaik, S. K., & Chand, P. K. (1997). In vitro clonal propagation of an aromatic medicinal herb Ocimum basilicum (L.) (Sweet Basil) by axillary shoot proliferation. In Vitro Cellular and Developmental Biology, 33, 293–296.Google Scholar
  74. Sakaguchi, M., & Kan, T. (1982). Japanese researches on Stevia rebaudiana (Bert.) Bertoni and stevioside. Ci Culture, 34, 235–248.Google Scholar
  75. Salvi, N., George, L., & Eapen, S. (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell Tissue & Organ Culture, 68, 143–151.Google Scholar
  76. Saymaiya, R. K., & Shukla, K. C. (1998). Biodiversity conservation through agroforestry system. Advances in Plant Sciences, 11(2), 111–115.Google Scholar
  77. Schmidt, G. H., Ahmed, A. A. I., & Breuer, M. (1997). Effect of Melia azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (Lep., Noctuidae) Anz. Scha¨dlingskd. Pflanzenschutz Umweltschutz, 70, 4–12.Google Scholar
  78. Schöner, S., & Reinhard, E. (1986). Long-term cultivation of Digitalis lanata clones propagated in vitro: Cardenolide content of the regenerated plants 1. Planta Medica, 6, 478–481.Google Scholar
  79. Shahzad, A., & Siddiqui, S. A. (2000). In vitro organogenesis in Ocimum sanctum L. – A multipurpose herb. Phytomorphology, 50(1), 27–35.Google Scholar
  80. Shahzad, A., Ahmad, N., & Anis, M. (2006). An improved method of organogenesis from cotyledon callus of Acacia sinuata (Lour.) Merr. using Thidiazuron. Journal of Biotechnology, 8(1), 15–19.Google Scholar
  81. Shahzad, A., Faisal, M., & Anis, M. (2007). Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro regenerated plants and seedlings. The Annals of Applied Biology, 150, 341–349.Google Scholar
  82. Shahzad, A., Parveen, S., & Fatema, M. (2011). Development of regeneration system via nodal segment culture in Veronica anagallis-aquatica L. – An amphibious medicinal plant. Journal of Plant Interactions, 6(1), 61–68.Google Scholar
  83. Sharma, A. K., Sharma, M., & Chaturvedi, H. C. (2002). Conservation of phytodiversity of Azadirachta indica A. Juss. through in vitro strategies. In S. K. Nandi, L. M. S. Palni, & A. Kumar (Eds.), Role of plant tissue culture in biodiversity conservation and economic development (pp. 51–520). Nainital: Gyanodaya Prakashan.Google Scholar
  84. Sharry, S., & Abedini, W. (2001). Selección de callos organogénicos tolerantes a baja temperatura y regeneración de plantas de Melia azedarach L. Revista Fitotecnia Mexicana, 24(1), 95–102.Google Scholar
  85. Siddique, I., & Anis, M. (2007). In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): A medicinal plant. Acta Physiologiae Plantarum, 29, 233–238.Google Scholar
  86. Singh, N. K., & Sehgal, C. B. (1999). Micropropagation of ‘holy basil’ (Ocimum sanctum Linn.) from young inflorescences of mature plants. Plant Growth Regulation, 29, 161–166.Google Scholar
  87. Singh, B., & Sood, S. (2009). Significance of explant preparation and sizing in Aloe vera L. A highly efficient method for in vitro multiple shoot induction. Scientia Horticulturae, 122, 146–15.1.Google Scholar
  88. Sivaram, L., & Mukundan, U. (2003). In vitro culture studies on Stevia rebaudiana. In Vitro Cellular and Developmental Biology, 39, 520–552.Google Scholar
  89. Soejarto, D. D., Kinghorn, A. D., & Fransworth, N. R. (1982). Potential sweetening agents of plant origin. Journal of Natural Products, 45, 590–599.Google Scholar
  90. Soniya, E. V., & Das, M. R. (2002). In vitro micropropagation of Piper longum – An important medicinal plant. Plant Cell Tissue & Organ Culture, 70, 325–327.Google Scholar
  91. Sood, H., & Chauhan, H. S. (2009). Development of a low cost micropropagation technology for an endangered medicinal herb (Picorhiza kurroa) of North-Western Himalayas. Journal of Plant Sciences, 4(2), 21–31.Google Scholar
  92. Sridhar, T. M., & Naidu, C. V. (2011). High frequency plant regeneration, in vitro flowering of Solanum nigrum (L.) – An important antiulcer medicinal plant. Journal of Phytology, 3(2), 85–93.Google Scholar
  93. Su, W. W., Hwang, W. I., Kim, S. Y., & Sagawa, Y. (1997). Induction of somatic embryogenesis in Azadirachta indica. Plant Cell, Tissue and Organ Culture, 50, 91–95.Google Scholar
  94. Sundari, M. S., Benniamin, A., & Manickam, V. S. (2010). Micropropagation and in vitro flowering in Solanum nigrum Linn. a medicinal plant. International Journal of Biological Technology, 1(1), 29–32.Google Scholar
  95. Tamura, Y., Nakamura, S., Fukui, H., & Tabata, M. (1984). Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture. Plant Cell Reports, 3, 183–185.Google Scholar
  96. Tanaka, O. (1982). Steviol-glycosides: New natural sweeteners. Trends in Analytical Chemistry, 1, 246–248.Google Scholar
  97. Thakur, R., Rao, P. S., & Bapat, V. A. (1998). In vitro plant regeneration in Melia azedarach L. Plant Cell Reports, 18, 127–131.Google Scholar
  98. Thengane, S. R., Kulkarni, D. K., & Krishnamurthy, K. V. (1998). Micropropagation of licorice (Glycirrhiza glabra L.) through shoot tip and nodal cultures. In Vitro Cellular and Developmental Biology – Plant, 34(4), 331–334.Google Scholar
  99. Thomas, T. D., & Maseena, E. A. (2006). Callus induction and plant regeneration in Cardiospermum halicacabum Linn. an important medicinal plant. Scientia Horticulturae, 108, 332–336.Google Scholar
  100. Tiwari, V., Tiwari, K. N., & Singh, B. D. (2001). Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tissue and Organ Culture, 66(1), 9–16.Google Scholar
  101. Tolyat, M., Abdoli, M., Moshgin, M. G., Khalighi-Sigaroodi, F., & Omidi, M. (2009). Propagation of Ginkgo biloba L. through tissue culture of various plant parts. Journal of Medicinal Plants, 8(29), 156–163, 172.Google Scholar
  102. Uranbey, S. (2005). Thidiazuron induced adventitious shoot regeneration in Hyoscyamus niger. Biologia Plantarum, 49(3), 427–430.Google Scholar
  103. Vadodaria, H. K., Samantaray, S., & Maiti, S. (2007). Micropropagation of Glycirrhiza glabra Linn. An important medicinal plant. Journal of Cell and Tissue Research, 7(1), 921–926.Google Scholar
  104. Vaidyaratnam, P. S. (1994). Indian medicinal plants a compendium of 500 species (Vol. 1, pp. 33–35). Madras: Orient Longman Limited.Google Scholar
  105. Vengadesan, G., Ganapathi, A., Anand, R. P., & Anbazhagan, V. R. (2000). In vitro organogenesis and plant formation in Acacia sinuata. Plant Cell Tissue and Organ Culture, 61, 23–28.Google Scholar
  106. Vengadesan, G., Ganapathi, A., Prem Anand, R., & Anbazhagan, V. R. (2002). In vitro propagation of Acacia sinuata (Lour.) Merr. via cotyledonary nodes. Agroforestry Systems, 55, 9–15.Google Scholar
  107. Vengadesan, G., Ganapathi, A., Prem Anand, R., & Selvaraj, N. (2003a). In vitro propagation of Acacia sinuata (Lour.) Merr. from nodal segments of a 10-year old tree. In Vitro Cellular and Developmental Biology – Plant, 39, 409–414.Google Scholar
  108. Vengadesan, G., Ganapathi, A., Amutha, S., & Selvaraj, N. (2003b). High frequency plant regeneration from cotyledon derived callus Acacia sinuata (Lour.) Merr. In Vitro Cellular and Developmental Biology – Plant, 39, 28–33.Google Scholar
  109. Vila, S., Gonzalez, A., Rey, H., & Miroginskoi, L. (2003a). Somatic embryogenesis and plant regeneration from immature zygotic embryos of Melia azedarach (Meliaceae). In Vitro Cellular and Developmental Biology – Plant, 39, 283–287.Google Scholar
  110. Vila, S. K., Gonzalez, A. M., Rey, H. Y., & Miroginskoi, L. A. (2003b/2004). In vitro plant regeneration of Melia azedarach L.: Shoot organogenesis from leaf explants. Biologia Plantarum, 47(1), 13–19.Google Scholar
  111. Vila, S., Gonzalez, A., Rey, H., & Mroginski, L. (2005). Plant regeneration, origin, and development of shoot buds from root segments of Melia azedarach L. (Meliaceae) seedlings. In Vitro Cellular & Developmental Biology – Plant, 41, 746–751.Google Scholar
  112. Vines, G. (2004). Herbal harvests with a future: Towards a sustainable source for medicinal plants. Salisbury: Plant life International. Google Scholar
  113. Wang, J. W., Wang, Q. K., & Chiu, S. (1994). Insecticidal compounds in Meliaceae. Acta Entomologica Sinica, 37(1), 20–24.Google Scholar
  114. Yasseen, Y. M. (1994). Shoot proliferation and plant formation from neem with thidiazuron. Horticultural Science, 29, 515.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Plant Biotechnology Laboratory, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations