Checking Proofs

Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 30)

Abstract

Contemporary argumentation theory tends to steer away from traditional formal logic. In the case of argumentation theory applied to mathematics, though, it is proper for argumentation theory to revisit formal logic owing to the in-principle formalizability of mathematical arguments. Completely formal proofs of substantial mathematical arguments suffer from well-known problems. But practical formalizations of substantial mathematical results are now available, thanks to the help provided by modern automated reasoning systems. In-principle formalizability has become in-practice formalizability. Such efforts are a resource for argumentation theory applied to mathematics because topics that might be thought to be essentially informal reappear in the computer-assisted, formal setting, prompting a fresh appraisal.

Keyword

formal logic mathematical practice mathematical proof natural deduction proof analysis proof checking proof reconstruction 

Notes

Acknowledgements

Both authors were partially supported by the ESF research project Dialogical Foundations of Semantics within the ESF Eurocores programme ‘LogICCC’, LogICCC/0001/2007, and the project ‘The Notion of Mathematical Proof’, PTDC/MHC-FIL/5363/2012, both funded by the Portuguese Science Foundation FCT. Alama’s research was conducted in part as a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences, Cambridge, in the programme ‘Semantics & Syntax’. Kahle was partially supported by the FCT project ‘Hilbert’s Legacy in the Philosophy of Mathematics’, PTDC/FIL-FCI/109991/2009.

References

  1. Appel, K., & Haken, W. (1977). Every planar map is four-colorable. Illinois Journal of Mathematics, 21, 439–567.Google Scholar
  2. Arkoudas, K., & Bringsjord, S. (2007). Computers, justification, and mathematical knowledge. Minds and Machines, 17(2), 185–202.CrossRefGoogle Scholar
  3. Aschbacher, M. (2004). The status of the classification of the finite simple groups. Notices of the American Mathematical Society, 51(7), 736–740.Google Scholar
  4. Avigad, J. (2006). Mathematical method and proof. Synthese, 153, 105–149.CrossRefGoogle Scholar
  5. Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12, 81–106.CrossRefGoogle Scholar
  6. Bassler, O. B. (2006). The surveyability of mathematical proof: A historical perspective. Synthese, 148, 99–133.CrossRefGoogle Scholar
  7. Buss, S. (1998). An introduction to proof theory. In S. Buss (Ed.), Handbook of proof theory, volume 137 of studies in logic and the foundations of mathematics (pp. 1–78). Amsterdam: Elsevier.Google Scholar
  8. Carroll, L. (1895). What the tortoise said to Achilles. Mind, 4(14), 278–280.CrossRefGoogle Scholar
  9. Davis, M. (1981). Obvious logical inferences. In Proceedings of the 7th international joint conference on artificial intelligence (IJCAI) (pp. 530–531). Los Angeles, CA: William Kaufmann.Google Scholar
  10. de Bruijn, N. (1980). A survey of the project Automath. In J. R. Hindley & J. P. Seldin (Eds.), To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism. London: Academic Press.Google Scholar
  11. De Millo, R., Lipton, R. J., & Perlis, A. J. (1979). Social processes and proofs of theorems and programs. Communications of the ACM, 22(5), 271–280.CrossRefGoogle Scholar
  12. Detlefsen, M., & Luker, M. (1980). The four-color theorem and mathematical proof. Journal of Philosophy, 77(12), 803–820.CrossRefGoogle Scholar
  13. Fallis, D. (2003). Intentional gaps in mathematical proofs. Synthese, 134, 45–69.CrossRefGoogle Scholar
  14. Gonthier, G. (2008). Formal proof—The four color theorem. Notices of the American Mathematical Society, 55(11), 1382–1393.Google Scholar
  15. Grabowski, A., Korniłowicz, A., & Naumowicz, A. (2010). Mizar in a nutshell. Journal of Formalized Reasoning, 3(2), 153–245.Google Scholar
  16. Hales, T. C. (2005). A proof of the Kepler conjecture. Annals of Mathematics, 162(3), 1063–1185.CrossRefGoogle Scholar
  17. Hales, T. C. (2008). Formal proof. Notices of the American Mathematical Society, 55(11), 1370–1380.Google Scholar
  18. Hardy, G. H., & Wright, E. M. (1960). An introduction to the theory of numbers (4th ed.). Oxford: Oxford University Press.Google Scholar
  19. Harrison, J. (2008). Formal proof—Theory and practice. Notices of the American Mathematical Society, 55(11), 1395–1406.Google Scholar
  20. Harrison, J. (2009). Handbook of practical logic and automated reasoning. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Heintz, B. (2003). When is a proof a proof? Social Studies of Science, 33(6), 929–943.CrossRefGoogle Scholar
  22. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (edited by J. Worrall & E. Zahar). Cambridge: Cambridge University Press.Google Scholar
  23. Löwe, B., Müller, T., & Müller-Hill, E. (2010). Mathematical knowledge as a case study in empirical philosophy of mathematics. In B. van Kerkhove, J. de Vuyst, & J. P. van Bendegem, (Eds.), Philosophical perspectives on mathematical practice. London: College Publications.Google Scholar
  24. MacKenzie, D. (1999). Slaying the Kraken: The sociohistory of a mathematical proof. Social Studies of Science, 29(1), 7–60.CrossRefGoogle Scholar
  25. MacKenzie, D. (2004). Mechanizing proof: Computing, risk, and trust. Cambridge, MA: MIT Press.Google Scholar
  26. Mancosu, P. (2000). On mathematical explanation. In E. Grosholz & H. Berger (Eds.), Growth of mathematical knowledge (pp. 103–119). Dordrecht: Kluwer.CrossRefGoogle Scholar
  27. Matuszewski, R., & Rudnicki, P. (2005). Mizar: The first 30 years. Mechanized Mathematics and Its Applications, 4, 3–24.Google Scholar
  28. McCune, W. (1997). Solution of the Robbins problem. Journal of Automated Reasoning, 19(3), 263–276.CrossRefGoogle Scholar
  29. Netz, R. (2003). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.Google Scholar
  30. Orevkov, V. P. (1993). Complexity of proofs and their transformations in axiomatic theories, volume 128 of translations of mathematical monographs (A. Bochman, Trans. from the original Russian manuscript, translation edited by D. Louvish). Providence, RI: American Mathematical Society.Google Scholar
  31. Portoraro, F. (2008). Automated reasoning. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Fall 2008 Edition. http://plato.stanford.edu/archives/fall2008/entries/reasoning-automated/.
  32. Prawitz, D. (2008). Proofs verifying programs and programs producing proofs: A conceptual analysis. In R. Lupacchini & G. Corsi (Ed.), Deduction, computation, experiment: Exploring the effectiveness of proof (pp. 81–94). Milan: Springer.CrossRefGoogle Scholar
  33. Rav, Y. (2007). A critique of a formalist-mechanist version of the justification of arguments in mathematicians’ proof practices. Philosophia Mathematica, 15(3), 291–320.CrossRefGoogle Scholar
  34. Rehmeyer, J. (2008). How to (really) trust a mathematical proof. Science News. Accessed May 2013. http://www.sciencenews.org/view/generic/id/38623/title/How_to_(really)_trust_a_mathematical_proof.
  35. Robertson, N., Sanders, D. P., Seymour, P. D., & Thomas, R. (1997). The four colour theorem. Journal of Combinatorial Theory. Series B, 70, 2–44.CrossRefGoogle Scholar
  36. Rudnicki, P. (1987). Obvious inferences. Journal of Automated Reasoning, 3(4), 383–393.CrossRefGoogle Scholar
  37. Scott, D. (2006). Foreword. In F. Wiedijk (Ed.), The seventeen provers of the world, volume 3600 of lecture notes in computer science (pp. vii–xii). Berlin: Springer.Google Scholar
  38. Teller, P. (1980). Computer proof. Journal of Philosophy, 77(12), 797–803.CrossRefGoogle Scholar
  39. Thomas, R. (2007). The four color theorem. Accessed May 2013. http://www.math.gatech.edu/~thomas/FC/fourcolor.html.
  40. Toulmin, S. E. (2003). The uses of argument (updated ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Tymoczko, T. (1979). The four-color problem and its philosophical significance. Journal of Philosophy, 76(2), 57–83.CrossRefGoogle Scholar
  42. van Bendegem, J. P. (1988). Non-formal properties of real mathematical proofs. In J. Leplin, A. Fine, & M. Forbes (Eds.), PSA: Proceedings of the biennial meeting of the philosophy of science association (Vol. 1, pp. 249–254). East Lansing, MI: Philosophy of Science Association (Contributed papers).Google Scholar
  43. Verchinine, K., Lyaletski, A. V., & Paskevich, A. (2007). System for automated deduction (SAD): A tool for proof verification. In F. Pfenning (Ed.), CADE, volume 4603 of lecture notes in computer science (pp. 398–403). Berlin: Springer.Google Scholar
  44. Wang, H. (1960). Toward mechanical mathematics. IBM Journal of Research and Development, 4(1), 2–22.CrossRefGoogle Scholar
  45. Wiedijk, F. (Ed.). (2006). The seventeen provers of the world, volume 3600 of lecture notes in computer science. Berlin: Springer.Google Scholar
  46. Wiedijk, F. (2008). Formal proof—Getting started. Notices of the American Mathematical Society, 55(11), 1408–1414.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Science and Technology, Center for Artificial IntelligenceUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CENTRIA and DM, FCTUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations