The Argument of Mathematics pp 339-360

Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 30) | Cite as

Mathematical Arguments and Distributed Knowledge

  • Patrick Allo
  • Jean Paul Van Bendegem
  • Bart Van Kerkhove
Chapter

Abstract

Because the conclusion of a correct proof follows by necessity from its premises, and is thus independent of the mathematician’s beliefs about that conclusion, understanding how different pieces of mathematical knowledge can be distributed within a larger community is rarely considered an issue in the epistemology of mathematical proofs. In the present chapter, we set out to question the received view expressed by the previous sentence. To that end, we study a prime example of collaborative mathematics, namely the Polymath Project, and propose a simple formal model based on epistemic logics to bring out some of the core features of this case-study.

Keywords

Collaborative mathematics Epistemic logic Group knowledge Interactive epistemology Mathematical practice Polymath. 

References

  1. Aberdein, A. (2005). The uses of argument in mathematics. Argumentation, 19(3), 287–301.CrossRefGoogle Scholar
  2. Aberdein, A. (2007). The informal logic of mathematical proof. In J. P. Van Bendegem & B. Van Kerkhove (Eds.), Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education (pp. 135–151). Dordrecht: Springer.Google Scholar
  3. Allo, P. (2013). The many faces of closure and introspection. Journal of Philosophical Logic, 42(1), 91–124.CrossRefGoogle Scholar
  4. Atkinson, K., Bench-Capon T., & McBurney, P. (2005). A dialogue game protocol for multi-agent argument over proposals for action. Journal of Autonomous Agents and Multi-Agent Systems, 11(2), 153–171.CrossRefGoogle Scholar
  5. Aron, J. (2011). Maths can be better together. New Scientist, 210(2811), 10–11.CrossRefGoogle Scholar
  6. Baltag, A., & Moss, L. S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.CrossRefGoogle Scholar
  7. Baltag, A., van Ditmarsch, H. P., & Moss, L. S. (2008). Epistemic logic and information update. In P. Adriaans & J. van Benthem (Eds.), Handbook on the philosophy of information (pp. 361–456). Amsterdam: Elsevier Science Publishers.CrossRefGoogle Scholar
  8. Barth, E. M., & Krabbe, E. C. W. (1982). From axiom to dialogue. A philosophical study of logics and argumentation. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
  9. Bondarenko, A., Dung, P. M., Kowalski, R. A., & Toni, F. (1997). An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93(1–2), 63–101.CrossRefGoogle Scholar
  10. Bovens, L., & Hartmann, S. (2003). Bayesian epistemology. Oxford: Oxford University Press.Google Scholar
  11. Cranshaw, J., & Kittur, A. (2011). The Polymath project: Lessons from a successful online collaboration in mathematics. In Proceedings of the conference on human factors in computing systems (CHI-11) (pp. 1–10). Vancouver, BC.Google Scholar
  12. Dudley, U. (1992). Mathematical cranks. Washington, DC: MAA.Google Scholar
  13. Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.CrossRefGoogle Scholar
  14. Furstenberg, H., & Katznelson, Y. (1991). A density version of the Hales-Jewett Theorem. Journal d’Analyse Mathématique, 57, 64–119.Google Scholar
  15. Gowers, T. (2009a). Why this particular problem? In Gowers’s Weblog. Mathematics related discussions. http://gowers.wordpress.com/2009/02/01/why-this-particular-problem/. Cited 11 Oct 2011.
  16. Gowers, T. (2009b). Must an “explicitly defined” Banach space contain c_0 or ell_p? In Gowers’s Weblog. Mathematics related discussions. http://gowers.wordpress.com/2009/02/17/must-an-explicitly-defined-banach-space-contain-c_0-or-ell_p/. Cited 11 Oct 2011.
  17. Gowers, T., & Nielsen, M. (2009). Massively collaborative mathematics. Nature, 461, 879–881.CrossRefGoogle Scholar
  18. Grossi, D. (2010). Doing argumentation theory in modal logic. ILLC-Preprint, 2009–24. Amsterdam: University of Amsterdam.Google Scholar
  19. Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.Google Scholar
  20. Hintikka, J. (1985). A spectrum of logics of questioning. Philosophica, 35, 135–150Google Scholar
  21. Hodges, W. (1998). An editor recalls some hopeless papers. The Bulletin of Symbolic Logic, 4(1), 1–16.CrossRefGoogle Scholar
  22. Jakobovits, H., & Vermeir, D. (1996). Contradiction in argumentation frameworks. In Proceedings of the IPMU conference (pp. 821–826). Granada.Google Scholar
  23. Jakobovits, H., & Vermeir, D. (1999a). Dialectic semantics for argumentation frameworks. In Proceedings of the seventh international conference on artificial intelligence and law (pp. 53–62). ACM: New York.Google Scholar
  24. Jakobovits, H., & Vermeir, D. (1999b). Robust semantics for argumentation frameworks. Journal of Logic and Computation, 6(2), 215–261.CrossRefGoogle Scholar
  25. Jeffreys, B. R., Kelley, L. A., Sergot, M. J., Fox, J., & Sternberg, M. J. E. (2006). Capturing expert knowledge with argumentation: A case study in bioinformatics. Bioinformatics, 22, 924–933.CrossRefGoogle Scholar
  26. Kakas, A. C., Mancarella, P., & Dung, P. M. (1994). The acceptability semantics for logic programs. In P. Van Hentenrijck (Ed.), Proceedings of the 11th international conference on logic programming (pp. 504–519). Cambridge, MA: MIT Press.Google Scholar
  27. Kitcher, P. (1990). The division of cognitive labor. The Journal of Philosophy, 87(1), 5–22.CrossRefGoogle Scholar
  28. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (edited by J. Worrall & E. Zahar). Cambridge: Cambridge University Press.Google Scholar
  29. Lorenzen, P., & Lorenz, K. (1978). Dialogische logik. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  30. Nielsen, M. (2011). Reinventing discovery: The new era of networked science. Princeton, NJ: Princeton University Press.Google Scholar
  31. Pollock, J. (1994). Justification and defeat. Artificial Intelligence, 67, 377–407.CrossRefGoogle Scholar
  32. Pólya, G. (1945). How to solve it. New York: Doubleday.Google Scholar
  33. Polymath, D. H. J. (2010). Density Hales-Jewett and Moser numbers. In I. Bárány & J. Solymosi (Eds.), An irregular mind (Szemerédi is 70): Vol. 21. Bolyai society mathematical studies (pp. 689–753). Berlin: Springer.Google Scholar
  34. Polymath, D. H. J. (2012). A new proof of the Density Hales-Jewett Theorem. Annals of Mathematics, 175(3), 1283–1327.CrossRefGoogle Scholar
  35. Popper, K. R. (1968). Epistemology without a knowing subject. In B. Van Rotselaar & J. F. Staal (Eds.), Logic, methodology and philosophy of science III (pp. 333–373). Amsterdam: North-Holland. (Reprinted as Chapter III of Popper 1972)Google Scholar
  36. Popper, K. R. (1972). Objective knowledge. Oxford: Oxford University Press.Google Scholar
  37. Prakken, H., & Sartor, G. (1996). A dialectical model of assessing conflicting arguments in legal reasoning. Artificial Intelligence and Law, 4, 331–368.CrossRefGoogle Scholar
  38. Prakken, H., & Vreeswijk, G. (2002). Logics for defeasible argumentation. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 4, pp. 219–318). Dordrecht: Kluwer.Google Scholar
  39. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica (III), 7(3), 5–41.CrossRefGoogle Scholar
  40. Reed, C. A. (1998). Dialogue frames in agent communication. In Proceedings of the 3rd international conference on multi agent systems (ICMAS–98) (pp. 246–253). Washington, DC: IEEE.CrossRefGoogle Scholar
  41. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  42. Van Bendegem, J. P. (1982). Pragmatics and mathematics or how do mathematicians talk? Philosophica, 29, 97–118.Google Scholar
  43. Van Bendegem, J. P. (1985a). Dialogue logic and problem-solving. Philosophica, 35, 113–134.Google Scholar
  44. Van Bendegem, J. P. (1985b). A connection between modal logic and dynamic logic in a problem solving community. In F. Vandamme & J. Hintikka (Eds.), Logic of discourse and logic of discovery (pp. 249–262). New York: Plenum Press.Google Scholar
  45. Van Bendegem, J. P., & Van Kerkhove, B. (2009). Mathematical arguments in context. Foundations of Science, 14(1–2), 45–57.CrossRefGoogle Scholar
  46. Van Eemeren, F. H., Grootendorst, R., & Kruiger, T. (2004). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge: Cambridge University Press.Google Scholar
  47. Van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic. Dordrecht: Springer.Google Scholar
  48. Verheij, B. (1995). Two approaches to dialectical argumentation: Admissible sets and argumentation stages. In J.-J. C. Meyer & L. C. van der Gaag (Eds.), NAIC’96: Proceedings of the eighth Dutch conference on artificial intelligence (pp. 357–368). Utrecht: Utrecht University.Google Scholar
  49. Vreeswijk, G. A. W. (1997). Abstract argumentation systems. Artificial Intelligence, 90(1–2), 225–279.CrossRefGoogle Scholar
  50. Walton, D. N. (1998). The new dialectic: Conversational contexts of argument. Toronto, ON: University of Toronto Press.Google Scholar
  51. Woods, J. (2003). Paradox and paraconsistency. Conflict resolution in the abstract sciences. Cambridge: Cambridge University Press.Google Scholar
  52. Zollman, K. J. S. (2007). The communication structure of epistemic communities. Philosophy of Science, 74(5), 574–587.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Patrick Allo
    • 1
  • Jean Paul Van Bendegem
    • 1
  • Bart Van Kerkhove
    • 1
  1. 1.Centre for Logic and Philosophy of ScienceVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations