Advertisement

What Philosophy of Mathematical Practice Can Teach Argumentation Theory About Diagrams and Pictures

  • Brendan Larvor
Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 30)

Abstract

There has been a rising tide of interest among argumentation theorists in visual reasoning. In the hands of the leaders of this development the effort has been to assimilate visual reasoning to verbal argumentation. At the same time, there is a more mature but still advancing literature on the use of diagrams in mathematical reasoning. There have been efforts to bring the two together. In this paper, I wish to use the philosophy of mathematical practice to identify a severe limitation in the attempt to assimilate visual reasoning to verbal reasoning, and by extension to criticise the approach to reasoning that treats all reasoning as if it were verbal reasoning.

Keywords

Diagram Icon Inferential action Notation Speech-act Verbal reasoning. 

Notes

Acknowledgements

I am grateful to the members of the Open University philosophy department for the opportunity they gave me to test this paper on them and to Valeria Giardino for the inspiration of her (2010).

References

  1. Birdsell, D., & Groarke, L. (1996). Toward a theory of visual argument. Argumentation and Advocacy, 33(1), 1–10.Google Scholar
  2. Birdsell, D., & Groarke, L. (2007). Outlines of a theory of visual argument. Argumentation and Advocacy, 43(3–4), 103–113.Google Scholar
  3. Dewey, J. (1938). Logic: The theory of inquiry. New York: Holt, Rinehart & Winston.Google Scholar
  4. Dove, I. J. (2002). Can pictures prove? Logique & Analyse, 179–180, 309–340.Google Scholar
  5. Fleming, D. (1996). Can pictures be arguments? Argumentation and Advocacy, 33(1), 11–22.Google Scholar
  6. Giardino, V. (2010). Interpretation is an action: Understanding diagrams by manipulating them. In A. Pease, M. Guhe & A. Smaill (Eds.), Proceedings of AISB 2010 symposium on mathematical practice and cognition (pp. 18–20). Leicester: AISB.Google Scholar
  7. Gibbons, M. G. (2007). Seeing the mind in the matter: Functional brain imaging as framed visual argument. Argumentation and Advocacy, 43(3–4), 175–188.Google Scholar
  8. Gilbert, M. (1997). Coalescent argumentation. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  9. Groarke, L. (2003). Are musical arguments possible? In F. H. van Eemeren, R. Grootendorst, J. A. Blair & C. A. Willard (Eds.), Proceedings of the fifth conference of the international society for the study of argumentation. Amsterdam: Sic Sat.Google Scholar
  10. Grosholz, E. R. (2007). Representation and productive ambiguity in mathematics and the sciences. Oxford: Oxford University Press.Google Scholar
  11. Hacking, I. (2010). Proof, truth, hands, and mind. Howison Lecture in Philosophy, University of California, Berkeley. Online at http://www.uctv.tv/search-details.aspx?showID=20382
  12. Hatfield, K. L., Hinck, A., & Birkholt, M. J. (2007). Seeing the visual in argumentation: A rhetorical analysis of UNICEF Belgium’s Smurf public service announcement. Argumentation and Advocacy, 43(3–4), 144–151.Google Scholar
  13. Inglis, M., & Mejía-Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science, 14(1–2), 97–110.CrossRefGoogle Scholar
  14. Johnson, R. (2005). Why “visual arguments” aren’t arguments. In H. V. Hansen, C. Tindale, J. A. Blair & R. H. Johnson (Eds.), Informal logic at 25. Windsor, ON: University of Windsor.Google Scholar
  15. Kjeldsen, J. E. (2007). Visual argumentation in Scandinavian political advertising: A cognitive, contextual and reception oriented approach. Argumentation and Advocacy, 43(3–4), 124–132.Google Scholar
  16. Kulpa, Z. (2009). Main problems of diagrammatic reasoning. Part I: The generalization problem. Foundations of Science, 14(1–2), 75–96.Google Scholar
  17. Larvor, B. (2005). Proof in C17 algebra. Philosophia Scientiae, 9. (Reprinted in Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education, by B. Van Kerkhove & J. P. Van Bendegem (Eds.), 2007, Dordrecht: Springer).Google Scholar
  18. Larvor, B. (2010a). Review of The philosophy of mathematical practice, P. Mancosu (Ed.), Oxford: Oxford University Press, 2008. Philosophia Mathematica, 18(3), 350–360.Google Scholar
  19. Larvor, B. (2010b). Syntactic analogies and impossible extensions. In B. Löwe & T. Müller (Eds.), PhiMSAMP. philosophy of mathematics: Sociological aspects and mathematical practice (pp. 97–208). London: College Publications.Google Scholar
  20. Lunsford, A. A., & Ruszkiewicz, J. J. (2001). Everything’s an argument (2nd ed.). New York: Bedford/St. Martins.Google Scholar
  21. Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.Google Scholar
  22. Manders, K. (2008 [1995]). The Euclidean diagram. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80–133). Oxford: Oxford University Press.Google Scholar
  23. Marghetis, T., & Núñez, R. (2010). Dynamic construals, static formalisms: Evidence from co-speech gesture during mathematical proving. In A. Pease, M. Guhe & A. Smaill (Eds.), Proceedings of AISB 2010 symposium on mathematical practice and cognition (pp. 23–29). Leicester: AISB.Google Scholar
  24. McNaughton, M. J. (2007). Hard cases: Prison tattooing as visual argument. Argumentation and Advocacy, 43(3–4), 133–143.Google Scholar
  25. Nelsen, R. B. (1993). Proofs without words. Washington, DC: Mathematical Association of America.Google Scholar
  26. Nelsen, R. B. (2000). Proofs without words II: More exercises in visual thinking. Washington, DC: Mathematical Association of America.Google Scholar
  27. Netz, R. (2003). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.Google Scholar
  28. Patterson, S. W. (2010). “A picture held us captive”: The later Wittgenstein on visual argumentation. Cogency, 2(2), 105–134.Google Scholar
  29. Peirce, C. S. (1885). On the algebra of logic: A contribution to the philosophy of notation. The American Journal of Mathematics, 7(2), 180–202. (Reprinted in Collected papers of Charles Sanders Peirce (Vol. 3), §§359–403, by C. Hartshorne & P. Weiss (Eds.), Cambridge, MA: Harvard University Press).Google Scholar
  30. Pineda, R. D., & Sowards, S. K. (2007). Flag waving as visual argument: 2006 immigration demonstrations and cultural citizenship. Argumentation and Advocacy, 43(3–4), 164–174.Google Scholar
  31. Pólya, G. (1954). Mathematics and plausible reasoning (Vols. 2). Princeton, NJ: Princeton University Press.Google Scholar
  32. Roberts, K. G. (2007). Visual argument in intercultural contexts: Perspectives on folk/traditional art. Argumentation and Advocacy, 43(3–4), 152–163.Google Scholar
  33. Serfati, M. (2005). La Révolution Symbolique: La Constitution de l’Ecriture Symbolique Mathématique. Paris: Éditions Petra. Preface by Jacques Bouverasse.Google Scholar
  34. Sherry, D. (2009). The role of diagrams in mathematical arguments. Foundations of Science, 14(1–2), 59–74.CrossRefGoogle Scholar
  35. Smith, V. J. (2007). Aristotle’s classical enthymeme and the visual argumentation of the twenty-first century. Argumentation and Advocacy, 43(3–4), 114–123.Google Scholar
  36. Van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Philosophy, School of HumanitiesUniversity of HertfordshireHatfieldUK

Personalised recommendations