Tardigrades: An Example of Multicellular Extremophiles

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 27)

Abstract

Life has expanded its living range into almost every environmental niche imaginable on Earth. These include habitats of extreme temperature, pressure, and pH ranges, and environments with low nutrient and oxygen availability, high salinity, and radiation exposure. However, not only microbes can survive in these harsh environments but also some higher complexity organisms such as fungi, plants, and even animals. Among the toughest animals in this respect are tardigrades. These microscopic animals, also called “water bears,” are metameric invertebrates that live in a wide range of habitats such as in marine, freshwater, and terrestrial ecosystems. They possess various adaptation mechanisms such as cryptobiosis, which makes them astonishingly resistant to desiccation, extreme pressures, temperature, and radiation conditions. Thus, these multicellular organisms should be considered when assessing survival rates and evaluating analogue organisms for space travel and in extraterrestrial environments.

References

  1. Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17CrossRefGoogle Scholar
  2. Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb 45:501–556Google Scholar
  3. Bertolani R, Guidetti R, Jönsson IK, Altiero T, Boschini DA, Rebecchi L (2004) Experiences with dormancy in tardigrades. J Limnol 63(suppl 1):16–25Google Scholar
  4. Chela-Flores J (2011) The science of astrobiology. Springer, Dordrecht (see page 115)CrossRefGoogle Scholar
  5. Clark B (2001) Planetary interchange of bioactive material: probability factors and implications. Orig Life Evol Biosph 31:185–197PubMedCrossRefGoogle Scholar
  6. Clegg JS (1962) Free glycerol in dormant cysts of the brine shrimp, Artemia salina, and its disappearance during development. Biol Bull 122:295–301CrossRefGoogle Scholar
  7. Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol 128(Part B):613–624Google Scholar
  8. Danks HV (2000) Dehydration in dormant insects. J Insect Physiol 46:837–852PubMedCrossRefGoogle Scholar
  9. Davies PCW (1996) The transfer of viable microorganisms between planets. In: Ciba Foundation Symposium 202 – evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, ChichesterGoogle Scholar
  10. Drinkwater LE, Crowe JH (1991) Hydration state, metabolism, and hatching of Mono Lake Artemia cysts. Biol Bull 180:432–439CrossRefGoogle Scholar
  11. Eleutherio ECA, Araujo P, Panek A (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596PubMedCrossRefGoogle Scholar
  12. Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110PubMedCrossRefGoogle Scholar
  13. Franceschi T (1948) Anabiosi nei tardigdi. Boll Mus Ist Biol Univ Genova 22:47–49Google Scholar
  14. Gridetti R, Bertolani R (2011) Phylum Tardigrades Dayère 1840. In: ZQ Zhang (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootax 3148: 96–97Google Scholar
  15. Horikawa DD (2012) Survival of tardigrades in extreme environments: a model animal for astrobiology. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for Eukaryote survival and paleontological strategies, vol 21, Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 205–217Google Scholar
  16. Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848PubMedCrossRefGoogle Scholar
  17. Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade Ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556PubMedCrossRefGoogle Scholar
  18. Horneck G, Bücker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45PubMedCrossRefGoogle Scholar
  19. Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int J Astrobiol 6:147–152CrossRefGoogle Scholar
  20. Islam MR, Schulze-Makuch D (2007) Adaptation mechanisms of multicellular extremophiles. Int J Astrobiol 6:199–215CrossRefGoogle Scholar
  21. Jönsson KI (2003) Causes and consequences of excess resistance in cryptobiotic metazoans. Physiol Biochem Zool 76:429–435PubMedCrossRefGoogle Scholar
  22. Jönsson KI, Bertolani R (2001) Facts and fiction about long-term survival in Tardigrades. J Zool 255:121–123CrossRefGoogle Scholar
  23. Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18:R729–R731PubMedCrossRefGoogle Scholar
  24. MacRae TH (2000) Structure and function of small heat shock/-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913PubMedCrossRefGoogle Scholar
  25. Madin KA, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342CrossRefGoogle Scholar
  26. Mancinelli RL, White MR, Rothschild LJ (1998) Biopan survival I: exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334CrossRefGoogle Scholar
  27. Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh HJ, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space. Part 1: from Mars to Earth and Earth to Mars. Icarus 145:391–427PubMedCrossRefGoogle Scholar
  28. Nicholson WL, Fajardo-Cavazos P, Langenhorst F, Melosh HJ (2006) Bacterial spores survive hypervelocity launch by spallation: implications for lithopanspermia. In: Lunar planet science conference XXXVII, League City, 2006, #1808Google Scholar
  29. Pannewitz S, Schlensog M, Green TGA (2003) Are lichens active under snow in continental Antarctica? Ecophysiology 135:30–38Google Scholar
  30. Rebecchi L, Altiero T, Guidetti R, Cesari M, Bertolani R, Negroni M, Rizzo AM (2009) Tardigrade resistance to space effects: first results of experiments on the LIFE-TARSE mission on FOTON-M3 (September 2007). Astrobiology 9:581–591PubMedCrossRefGoogle Scholar
  31. Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387/388:321–326CrossRefGoogle Scholar
  32. Romano FA III (2003) On water bears. Florida Entomologist 86:134–137CrossRefGoogle Scholar
  33. Schmidt-Rhaesa A (2001) Tardigrades – are they really miniaturized dwarfs? Zoologischer Anzeiger 240:549–555CrossRefGoogle Scholar
  34. Schokraie E, Hotz-Wagenblatt A, Warnken U, Mali B, Frohme M, Förster F, Dandekar T, Hengherr S, Schill R-O, Schnölzer M (2010) Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PLoS One 5:e9502PubMedCrossRefGoogle Scholar
  35. Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  36. Schulze-Makuch D, Fairén AG, Davila AF (2008) The case for life on Mars. Int J Astrobiol 7:117–141CrossRefGoogle Scholar
  37. Seckbach J (2013) Life on the edge: who is who in polyextremophiles: life under multiple forms of stress. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Springer, DordrechtCrossRefGoogle Scholar
  38. Somero GN, Yancey PH (1997) Osmolytes and cell volume regulation: physiological and evolutionary principles. In: Hoffman JF, Jamieson JD (eds) Handbook of physiology. Oxford University Press, New York, pp 441–484Google Scholar
  39. Steiner G, Albin FE (1946) Resuscitation of the nematode Tylenchus polyhypnus sp., after almost 39 years’ dormancy. J Wash Acad Sci 36:97–99PubMedGoogle Scholar
  40. Takamatsu N, Kojima M, Taniyama M, Ohba K, Uematsu T, Segawa C, Tsutou S, Watanabe M, Kondo J, Kondo N, Shiba T (1997) Expression of multiple 1-antitrypsin-like genes in hibernating species of the squirrel family. Gene 204:127–132PubMedCrossRefGoogle Scholar
  41. Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31CrossRefGoogle Scholar
  42. Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 206:2281–2286PubMedCrossRefGoogle Scholar
  43. Westh P, Ramlov H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311CrossRefGoogle Scholar
  44. Wharton DA (2002) Life at the limits – organisms in extreme environments. Cambridge University Press, New York, 300 ppCrossRefGoogle Scholar
  45. Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17PubMedCrossRefGoogle Scholar
  46. Wright JC, Westh P, Ramløv H (1992) Cryptobiosis in Tardigrada. Biol Rev 67:1–29CrossRefGoogle Scholar
  47. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero G (1982) Living with water stress: evolution of osmolytes systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Earth and Environmental SciencesWashington State UniversityPullmanUSA
  2. 2.The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations