First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures

  • Elton J. G. Santos
  • Andrés Ayuela
  • Daniel Sánchez-Portal
Chapter

Abstract

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: substitutional doping with transition metals, and sp3-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows:
  1. 1.

    Substitutional metal impurities are fully understood using a model based on the hybridization between the d states of the metal atom and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping.

     
  2. 2.

    A spin moment of 1.0 μB is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C–C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character.

     
  3. 3.

    The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are nonmagnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer.

     

All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.

References

  1. Amara H, Latil S, Meunier V, Lambin PH, Charlier JC (2007) Phys Rev B 76:115423CrossRefGoogle Scholar
  2. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys Status Solidi B 215: 809–817CrossRefGoogle Scholar
  3. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) J Am Chem Soc 123:6536CrossRefGoogle Scholar
  4. Banhart F, Charlier JC, Ajayan PM (2000) Phys Rev Lett 84:686CrossRefGoogle Scholar
  5. Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  6. Brey L, Fertig HA, Das Sarma S (2007) Phys Rev B 99:116802Google Scholar
  7. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blakenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Nature 466:470CrossRefGoogle Scholar
  8. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 1:109CrossRefGoogle Scholar
  9. Chen JH, Li L, Cullen WG, Williams ED, Fuhrer MS (2010) Nat Phys 7:535CrossRefGoogle Scholar
  10. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, BerlinCrossRefGoogle Scholar
  11. Gan Y, Sun L, Banhart F (2008) Small 4:587CrossRefGoogle Scholar
  12. Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  13. Guinea F, Katsnelson MI, Geim AK (2010) Nat Phys 6:30CrossRefGoogle Scholar
  14. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE (2000) Chem Phys Lett 330:219CrossRefGoogle Scholar
  15. Huang B, Yu JJ, Wei SH (2011) Phys Rev B 84:075415CrossRefGoogle Scholar
  16. Hueso LE, Pruneda JM, Ferrari V, Burnell G, Valdes-Herrera JP, Simons BD, Littlewood PB, Artacho E, Fert A, Mathur ND (2008) Nature 445:410CrossRefGoogle Scholar
  17. Kelly KF, Halas NJ (1998) Surf Sci 416:L1085CrossRefGoogle Scholar
  18. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Nature 457:706CrossRefGoogle Scholar
  19. Kirwan DF, Rocha CG, Costa AT, Ferreira MS (2008) Phys Rev B 77:085432CrossRefGoogle Scholar
  20. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykkö P, Nieminen RM (2009) Phys Rev Lett 102:126807CrossRefGoogle Scholar
  21. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  22. Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  23. Kumazaki H, Hirashima DS (2007) J Phys Soc Jpn 76:064713CrossRefGoogle Scholar
  24. Kumazaki H, Hirashima DS (2008) Low Temp Phys 34:805CrossRefGoogle Scholar
  25. Lehtinen PO, Foster AS, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen RM (2003) Phys Rev Lett 91:017202CrossRefGoogle Scholar
  26. Lieb EH (1989) Phys Rev Lett 62:1201CrossRefGoogle Scholar
  27. Mananes A, Duque F, Ayuela A, Lopez MJ, Alonso JA (2008) Phys Rev B 78:035432CrossRefGoogle Scholar
  28. Mizes HA, Foster JS (1989) Science 244:559CrossRefGoogle Scholar
  29. Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C, Marzari N, Novoselov KS, Geim AK, Ferrari AC (2009) Phys Rev B 79:205433CrossRefGoogle Scholar
  30. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  31. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197CrossRefGoogle Scholar
  32. Palacios JJ, Fernandez-Rossier J, Brey L (2008) Phys Rev B 77:195428CrossRefGoogle Scholar
  33. Pereira VM, Castro Neto AH (2009) Phys Rev Lett 103:046801CrossRefGoogle Scholar
  34. Pereira VM, Lopes Santos JMB, Castro Neto AH (2008) Phys Rev B 77:115109CrossRefGoogle Scholar
  35. Rodriguez-Manzo JA, Banhart F (2009) Nano Lett 9:2285CrossRefGoogle Scholar
  36. Rodriguez-Manzo JA, Cretu O, Banhart F (2010) ACS Nano 4:3422CrossRefGoogle Scholar
  37. Ruffieux P, Groning O, Schwaller P, Schlapbach L, Groning P (2000) Phys Rev Lett 84:4910CrossRefGoogle Scholar
  38. Rutter GM, Crain JN, Guisinger NP, Li T, First PN, Stroscio JA (2007) Science 317:219CrossRefGoogle Scholar
  39. Saini RK, Chiang IW, Peng H, Smalley RE, Billups WE, Hauge RH, Margrave JL (2002) J Am Chem Soc 125:3617CrossRefGoogle Scholar
  40. Santos EJG, Ayuela A, Fagan SB, Filho JM, Azevedo DL, Filho AGS, Sánchez-Portal D (2008) Phys Rev B 78:195420CrossRefGoogle Scholar
  41. Santos EJG, Ayuela A, Sánchez-Portal D (2010a) New J Phys 12:053012CrossRefGoogle Scholar
  42. Santos EJG, Sánchez-Portal D, Ayuela A (2010b) Phys Rev B 81:125433CrossRefGoogle Scholar
  43. Santos EJG, Riikonen S, Sánchez-Portal D, Ayuela A (2010c) arXiv:1012.3304Google Scholar
  44. Santos EJG, Sanchez-Portal D, Ayuela A (2011) Appl Phys Lett 99:062503CrossRefGoogle Scholar
  45. Santos EJG, Ayuela A, Sánchez-Portal D (2012a) J Phys Chem C 116:1174CrossRefGoogle Scholar
  46. Santos EJG, Ayuela A, Sánchez-Portal D (2012b) arXiv:1201.5326Google Scholar
  47. Saremi S (2008) Phys Rev B 76:184430CrossRefGoogle Scholar
  48. Singh P, Kumar J, Toma FM, Raya J, Prato M, Fabre B, Verma S, Bianco A (2009) J Am Chem Soc 131:13555CrossRefGoogle Scholar
  49. Soler JM, Artacho E, Gale JD, Garca A, Junquera J, Ordejn P, Snchez-Portal D (2002) J Phys Condens Matter 14:2745CrossRefGoogle Scholar
  50. Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347CrossRefGoogle Scholar
  51. Standley B, Bao W, Zhang H, Bruck J, Lau CN, Bockrath M (2008) Nano Lett 8:3345CrossRefGoogle Scholar
  52. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Nature 448:571CrossRefGoogle Scholar
  53. Trauzettel B, Bulaev DV, Loss D, Burkard G (2007) Nat Phys 3:192CrossRefGoogle Scholar
  54. Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R (2010) Nat Chem 3:61CrossRefGoogle Scholar
  55. Troullier N, Martins JL (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  56. Ugeda MM, Brihuega I, Guinea F, Gomez-Rodriguez JM (2010) Phys Rev Lett 104:096804CrossRefGoogle Scholar
  57. Ushiro M, Uno K, Fujikawa T, Sato Y, Tohji K, Watari F, Chun WJ, Koike Y, Asakura K (2006) Phys Rev B 73:144103CrossRefGoogle Scholar
  58. Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Phys Rev B 72:155121CrossRefGoogle Scholar
  59. Yazyev OV (2008a) Nano Lett 8:1011CrossRefGoogle Scholar
  60. Yazyev OV (2008b) Phys Rev Lett 101:037203CrossRefGoogle Scholar
  61. Yazyev OV, Helm LH (2007) Phys Rev B 75:125408CrossRefGoogle Scholar
  62. Yazyev OV, Katsnelson MI (2008) Phys Rev Lett 100:047209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Elton J. G. Santos
    • 1
    • 2
    • 3
    • 4
  • Andrés Ayuela
    • 1
    • 2
  • Daniel Sánchez-Portal
    • 1
    • 2
  1. 1.Centro de Física de Materiales (CFM-MPC) CSIC-UPV/EHUSan SebastiánSpain
  2. 2.Donostia International Physics Center (DIPC)San SebastiánSpain
  3. 3.Harvard School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  4. 4.Cruft LaboratoryCambridgeUSA

Personalised recommendations