Molecular Genetic Basis of the Domestication Syndrome in Cereals

Chapter

Abstract

Plant and animal domestication that was initiated approximately 10,000 years ago led to the dramatic evolution of human society and rapid speciation of plants and animals co-evolving with humans.

Keywords

Quantitative Trait Locus Rice Cultivar Artificial Selection Major Quantitative Trait Locus Abscission Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matuoka M (2005) Cytokinin oxicase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  2. Azhanguvel P, Komatsusa T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015CrossRefGoogle Scholar
  3. Beadle GW (1939) Teosinte and the origin of maize. J Hered 30:245–247Google Scholar
  4. Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohstubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75PubMedCrossRefGoogle Scholar
  5. Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spkelet1. Nat Genet 39:1517–1521PubMedCrossRefGoogle Scholar
  6. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Aced Sci USA 101:700–707CrossRefGoogle Scholar
  7. Clark RM, Wagler TN, Quijada P, Doebley JF (2006) A distant upstream enhance at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597PubMedCrossRefGoogle Scholar
  8. Cunniff J, Osborne CP, Ripley BS, Charles M, Jones G (2008) Response of wild C4 crop progenitors to subambient CO2 highlights a possible role in the origin of agriculture. Glob Change Biol 14:576–587CrossRefGoogle Scholar
  9. Darwin CR (1859) On the origin of species by means of natural selection. Jone Murray, LondonGoogle Scholar
  10. Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707PubMedCrossRefGoogle Scholar
  11. Doebley JF (2001) George Beadle’s other hypothesis: one-gene, one-trait. Genetics 158:487–493PubMedGoogle Scholar
  12. Doebley JF (2004) The genetics of maize evolution. Ann Rev Genet 38:37–59PubMedCrossRefGoogle Scholar
  13. Doebley JF, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082PubMedGoogle Scholar
  14. Doebley JF, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  15. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  16. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141PubMedCrossRefGoogle Scholar
  17. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  18. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238PubMedCrossRefGoogle Scholar
  19. Faris JD, Simons KJ, Zhang Z, Gill BS (2006) The wheat super domestication gene Q. Wheat Information Service—Frontiers of Wheat Bioscience 100:129–148. (http://www.shigen.nig.ac.jp/wheat/wis/No100/100.html)Google Scholar
  20. Fuller DQ, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya LA, Sun GP (2009) The domestication process and domestication rate in rice: spikelet bases from the lower Yangtze. Science 323:1607–1610PubMedCrossRefGoogle Scholar
  21. Furukawa T, Maekawa M, Oki T, Suda I, Lida S, Shimada H, Takamure I, Kadowaki K (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant Journal 49:91–102PubMedCrossRefGoogle Scholar
  22. Ge S, Sang T (2011) Inappropriate model rejects independent domestications of indica and japonica rice. Proc Natl Acad Sci USA 108:E75Google Scholar
  23. Gu XY, Kianian SF, Hareland GA, Hoffer BL, Foley ME (2005) Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet 110:1108–1118PubMedCrossRefGoogle Scholar
  24. Hancock JF (2004) Plant evolution and the origin of crop species, 2nd edn. CABI Publishing, CambridgeGoogle Scholar
  25. Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy and Crop Science Society of America, MadisonGoogle Scholar
  26. He Z, Zhai W, Wen H, Tan T, Wang Y, Lu X, Greenburg AJ, Hudson RR, Wu C-I, Shi S (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:e1002100PubMedCrossRefGoogle Scholar
  27. Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotech 19:202–209PubMedCrossRefGoogle Scholar
  28. Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, Guan JP, Fan DL, Weng QJ, Huang T, Dong GJ, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076PubMedCrossRefGoogle Scholar
  29. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967PubMedCrossRefGoogle Scholar
  30. Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935PubMedGoogle Scholar
  31. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  32. Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness. Theor Appl Genet 108:261–273PubMedCrossRefGoogle Scholar
  33. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544PubMedCrossRefGoogle Scholar
  34. Jin J, Huang W, Gao J-P, Yang J, Shi M, Zhu M-Z, Luo D, Lin H-X (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369PubMedCrossRefGoogle Scholar
  35. Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32PubMedCrossRefGoogle Scholar
  36. Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995PubMedCrossRefGoogle Scholar
  37. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicher T, Tagiri A et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429PubMedCrossRefGoogle Scholar
  38. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396PubMedCrossRefGoogle Scholar
  39. Li W, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309PubMedCrossRefGoogle Scholar
  40. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621PubMedCrossRefGoogle Scholar
  41. Li C, Zhou A, Sang T (2006a) Rice domestication by reducing shattering. Science 311:1936–1939PubMedCrossRefGoogle Scholar
  42. Li C, Zhou A, Sang T (2006b) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194PubMedCrossRefGoogle Scholar
  43. Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410PubMedGoogle Scholar
  44. Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C (2007) Origin of seed shattering in rice (Oryza sativa L.). Planta 226:11–20PubMedCrossRefGoogle Scholar
  45. Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583PubMedCrossRefGoogle Scholar
  46. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410PubMedCrossRefGoogle Scholar
  47. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 107:19579–19584PubMedCrossRefGoogle Scholar
  48. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084PubMedCrossRefGoogle Scholar
  49. Miura K, Ikeda M, Matsubara A, Song X, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes paniclebranching and higher grain productivity in rice. Nat Genet 42:545–549PubMedCrossRefGoogle Scholar
  50. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Rynolds A, Huang P, Jackson SA, Schaal BA, Bustanante CD, Boybo AR, Purugganan MD (2011a) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351–8356PubMedCrossRefGoogle Scholar
  51. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Rynolds A, Huang P, Jackson SA, Schaal BA, Bustanante CD, Boybo AR, Purugganan MD (2011b) Reply to Ge and Sang: a single origin of domesticated rice. Proc Natl Acad Sci USA, doi/ 10.1073/pnas.1112466108
  52. Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294PubMedCrossRefGoogle Scholar
  53. Nalam VJ, Vales MI, Watson CJW, Kianian SF, Riera-Lizarazu O (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 112:373–381PubMedCrossRefGoogle Scholar
  54. Nalam VJ, Vales MI, Watson CJW, Johnson EB, Riera-Lizarazu O (2007) Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L). Theor Appl Genet 116:135–145PubMedCrossRefGoogle Scholar
  55. Oliver RJ, Finch JW, Taylor G (2009) Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and the implications for yield. GCB Bioenergy 1:97–114CrossRefGoogle Scholar
  56. Onishi K, Horiuchi Y, Ishigoh-Oka N, Takagi K, Ichikawa N, Maruoka M, Sano Y (2007) A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breeding Sci 57:7–16CrossRefGoogle Scholar
  57. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718PubMedCrossRefGoogle Scholar
  58. Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  59. Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008PubMedCrossRefGoogle Scholar
  60. Pozzi C, Rossini L, Vecchietti A, Salamini F (2004) Gene and genome changes during domestication of cereals. In Gupta PK, Varshney RK (eds) Cereal genomics, pp 165–198Google Scholar
  61. Richerson PJ, Boyd R, Bettinger RL (2001) Was agriculture impossible during the Pleiostocene but mandatory during the Holocene? A climate change hypothesis. Amer Antiq 66:387–411CrossRefGoogle Scholar
  62. Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldember J, Dladenoff DJ, Ojima D, Palmer M, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49–50PubMedCrossRefGoogle Scholar
  63. Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648PubMedCrossRefGoogle Scholar
  64. Sage R (1995) Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob Change Biol 1:93–106CrossRefGoogle Scholar
  65. Sakuma S, Salomon B, Komatsuda T (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52:738–749PubMedCrossRefGoogle Scholar
  66. Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Marin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:420–441Google Scholar
  67. Sang T (2009) Genes and mutations underlying domestication transitions in grasses. Plant Physiol 149:63–70PubMedCrossRefGoogle Scholar
  68. Sang T (2011) Toward the domestication of lignocellulosic energy crops: learning from food crop domestication. J Integr Plant Biol 53:96–104PubMedCrossRefGoogle Scholar
  69. Sang T, Ge S (2007a) The puzzle of rice domestication. J Integr Plant Biol 49:760–768CrossRefGoogle Scholar
  70. Sang T, Ge S (2007b) Genetics and phylogenetics of rice domestication. Cur Opin Genet Dev 17:533–538CrossRefGoogle Scholar
  71. Sang T, Zhu W-X (2011) China’s bioenergy potential. GCB Bioenergy 3:79–179CrossRefGoogle Scholar
  72. Schnable et al (2010) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefGoogle Scholar
  73. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319:1238–1244PubMedCrossRefGoogle Scholar
  74. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028PubMedCrossRefGoogle Scholar
  75. Simonetti MC, Bellomo MP, Laghetti G, Perrino P, Simeone R, Blanco A (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet Res Crop Evol 46:267–271CrossRefGoogle Scholar
  76. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555PubMedCrossRefGoogle Scholar
  77. Somerville C, Yongs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792PubMedCrossRefGoogle Scholar
  78. Sweeney MT, Thomson MJ, Pfeil BE, McCouch SR (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294PubMedCrossRefGoogle Scholar
  79. Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3:e133PubMedCrossRefGoogle Scholar
  80. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334PubMedCrossRefGoogle Scholar
  81. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067PubMedCrossRefGoogle Scholar
  82. Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364PubMedCrossRefGoogle Scholar
  83. van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Sánchez González JJ, Ross-Ibarra J (2011) Genetic signals of origin, spread and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092PubMedCrossRefGoogle Scholar
  84. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655PubMedCrossRefGoogle Scholar
  85. Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Gen Genet 272:504–511CrossRefGoogle Scholar
  86. Wang RL, Stec A, Hey J, Lukens L, Doebley JF (1999) The limits of selection during maize domestication. Nature 398:236–239PubMedCrossRefGoogle Scholar
  87. Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719PubMedCrossRefGoogle Scholar
  88. Wang L, Wang AH, Huang XH, Zhao Q, Dong GJ, Qian Q, Sang T, Han B (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombination inbred lines. Theor Appl Genet 122:327–340PubMedCrossRefGoogle Scholar
  89. Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185CrossRefGoogle Scholar
  90. Watanabe N, Fujii Y, Kato N, Ban T, Martinek P (2006) Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J Appl Genet 47:93–98PubMedCrossRefGoogle Scholar
  91. Wright SI, Vroh Bi I, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314PubMedCrossRefGoogle Scholar
  92. Xia Q et al (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–436PubMedCrossRefGoogle Scholar
  93. Youens-Clark K, Buckler E, Casstevens T, Chen C, DeClerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, Lu J, McCouch SR, Ren L, Spooner W, Stein JC, Thomason J, Wei S, Ware D (2011) Gramene database in 2010: updates and extensions. Nucleic Acids Res 39:D1085–D1094PubMedCrossRefGoogle Scholar
  94. Yu Y, Tang T, Qian Q, Wang Y, Yan M, Zeng D, Han B, Wu C-I, Shi S, Li J (2008) Independent losses of function in a polyphenol oxidase in rice: Differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell 20:2946–2959PubMedCrossRefGoogle Scholar
  95. Zhang L, Zhu Q, Wu Z, Ross-Ibarra J, Gaut BS, Ge S, Sang T (2009) Selection on grain shattering genes and rates of rice domestication. New Phytol 184:708–720PubMedCrossRefGoogle Scholar
  96. Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265PubMedCrossRefGoogle Scholar
  97. Zhu B, Si L, Wang Z, Zhou Y, Zhu J, Shangguan Y, Lu D, Fan D, Li C, Lin H, Qian Q, Sang T, Zhou B, Minobe Y, Han B (2011) Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol 155:1301–1311PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Systematic and Evolutionary Botany, Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of Botany, Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina

Personalised recommendations